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ABSTRACT

Despite the effectiveness of large language models (LLMs) for code
generation, they often output incorrect code. One reason is that
model output probabilities are often not well-correlated with cor-
rectness, and reflect only the final output of the generation process.
Inspired by findings that LLMs internally encode concepts like truth-
fulness, this paper explores if LLMs similarly represent code correct-
ness. Specifically, we identify a correctness representation inside
LLMs by contrasting the hidden states between pairs of correct and
incorrect code for the same programming tasks. By experimenting
on four LLMs, we show that exploiting this extracted correctness
representation outperforms standard log-likelihood ranking, as
well as verbalized model confidence. Furthermore, we explore how
this internal correctness signal can be used to select higher-quality
code samples, without requiring test execution. Ultimately, this
work demonstrates how leveraging internal representations can
enhance code generation systems and make LLMs more reliable,
thus improving confidence in automatically generated code.

1 INTRODUCTION

Large language models (LLMs) are increasingly integrated into soft-
ware development workflows [7], from code completion in IDEs [55,
52] to automated code generation systems [39]. As LLMs continue
to improve, we can expect an increasing reliance on generated code
in production systems [46].

While developers are expected to review and test generated code
before deployment, this ideal scenario does not always occur in
practice [83, 48]. Studies have documented cases where incorrect
or vulnerable model-generated code has made it into production
systems [22, 47]. Real-world incidents such as GitHub Copilot gener-
ating a fix for a NET runtime exception that merely adds superficial
bounds checking without addressing the underlying algorithmic
issue [23], further demonstrate how LLMs can produce functionally
inadequate solutions despite appearing reasonable.

Given this reality, it becomes essential to ensure the correctness
of LLM-generated code. In this work, we define code correctness
as adherence to a given problem specification, which can be ver-
ified through test execution—the standard measure used in code
generation benchmarks and in practice.

Currently, LLMs typically output the most probable code accord-
ing to their learned token distributions [70, 89, 16, 80]. However,
multiple studies [68, 86, 87] show that the most probable code often
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def solution(lst):
sum_of _odd_elements = @
for i in range(1, len(lst), 2):
if Ist[i]l % 2 != o:
sum_of_odd_elements += 1st[i]
return sum_of_odd_elements

(a) Incorrect: iterates odd indices

def solution(lst):
return sum([x for idx, x in enumerate(lst) if idx%2==0 and x%2==1])

(b) Correct: sums odd elements at even indices
Figure 1: Comparison of two candidate solutions for the task “Given
a non-empty list of integers, return the sum of all of the odd elements
that are in even positions.”
fails to meet correctness, as model probabilities are not always
well-correlated with correctness.

Consider the programming task in Figure 1, where we show an
incorrect and correct solution for the task. When we compute the
probability of CodeLlama 7B generating each solution (i.e., scoring
both implementations under the model), the incorrect implementa-
tion actually receives a higher probability. In other words, if we rank
the solutions based on the probability of CodeLlama 7B producing
this code, the wrong version would be ranked higher. Moreover,
even if we were to ask the model for its verbalized confidence in the
solutions [74] (i.e. its articulated certainty about each implementa-
tion, such as “Very confident” or “Not confident”), this also failed
to prioritize the correct implementation. If LLMs cannot reliably
differentiate between correct and incorrect code based on what the
model explicitly generates or says, then we cannot be confident in
the correctness of their outputs.

But what if the true signal of correctness does not lie in what
the model shows or tells us, but in what it computes internally?
Looking into internal mechanisms for how LLMs interpret different
concepts relates to Al interpretability and transparency, an area that
has seen a lot of active research in the natural language (NL) [73,
11, 51, 12, 65, 61] and computer vision [27, 18, 56] domains. The
growing evidence that LLMs internally encode rich conceptual in-
formation motivates us to look beyond the probabilistic favoring
of outputs and examine the internal mechanisms at work during
code generation. To this end, we turn to representation engineering
(RepE) [91], a recent approach in the area of Al transparency. RepE
offers a systematic approach for understanding how LLMs encode
concepts by analyzing their internal representation spaces. In NL
tasks, this approach showed that LLMs possess internal representa-
tions of concepts such as truthfulness [91], and importantly, that
these internal representations may not always align with the prob-
abilities assigned to the model’s generated outputs. Building on the
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idea that software, like NL, exhibits statistical regularities that mod-
els can learn [28], it is reasonable to hypothesize that LLMs may
also develop internal representations related to code correctness.
Accordingly, this paper addresses the following question: do
LLMs develop internal representations of code correctness that could
provide early signals about whether generated code will pass tests,
signals that are not necessarily evident from the final output prob-
abilities? We investigate this question by examining whether we
can capture an internal representation of code correctness that can
differentiate correct implementations from incorrect ones. Specif-
ically, we aim to answer the following research questions (RQs):

RQ1 Do LLMs possess an internal representation of code correct-
ness?

RQ2 Can leveraging internal correctness representations lead to
more effective correctness ranking?

To address these RQs, we extend RepE beyond its original NL set-
ting and adapt it to a programming language domain. We validate
our efforts on HumanEval [16] and BigCodeBench [90]. Specifically,
we compare this technique against standard likelihood-based [16,
41, 68] and reflective methods [74, 42, 88, 68, 33], demonstrating
that RepE outperforms these baselines in identifying correct imple-
mentations. Furthermore, we introduce a ranking method based on
correctness representations that allows for repeated sampling from
an LLM and using RepE to get the most promising solution without
running tests. In this ranking setup, we also compare to an existing
learning-based code ranking method, RankEF [69]. In HumanEval,
applying our strongest correctness-representation ranking variant
improves direct pass@1 by 21.3% on average, compared to 17.7%
for the strongest existing baseline (RankEF)—a roughly 20% relative
gain. In BigCodeBench, our strongest ranking variant delivers a
51.1% average improvement over pass@1 compared to 32.5% for
random selection (which for BigCodeBench surpasses other base-
lines). In both benchmarks, we close in on the pass@10 upper
bound. To summarize, our contributions are: 1) Adapting RepE for
code, demonstrating its effectiveness across four state-of-the-art
LLMs on both HumanEval and BigCodeBench; 2) Empirically vali-
dating that LLMs encode correctness internally, with representa-
tion-based scores outperforming likelihood and reflective metrics in
distinguishing correct from incorrect implementations; 3) a ranking
framework that leverages correctness representations that boosts
pass@1 by up to 51% without test-time overhead; 4) A public release
of a replication package to facilitate future research:

https:// github.com/sanadlab/ code-repe
2 BACKGROUND

This section presents the foundational concepts for our work: RepE [91]

for analyzing LLM internals, the question-answering framework
we use, and confidence metrics for assessing LLM generations.

2.1 Representation Engineering (RepE)

RepE [91] aims to improve LLM transparency by understanding
how concepts (e.g., truthfulness) and functions (e.g., honesty) are
encoded within neural networks. To do this, RepE analyzes the
inner workings of these models by examining their hidden states
to isolate patterns corresponding to specific concepts or functions.
RepE is a top-down approach [36] that starts with a high-level con-
cept (like truthfulness or, in our case, correctness) and seeks to find
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how that concept is represented within the model’s global represen-
tation space. In contrast, bottom-up approaches, e.g., mechanistic
interpretability [20], typically begin by examining the function of in-
dividual neurons or small circuits and build an understanding from
there. RepE is like studying a city by looking at its neighborhoods
and infrastructure (top-down) rather than reverse-engineering each
brick and wire (bottom-up).

RepE has been shown to be effective at detecting and control-
ling issues like dishonesty and bias [91]. Crucial to RepE is Linear
Artificial Tomography (LAT): a framework for analyzing hidden
states in an LLM and extracting meaningful representations. At a
high level, imagine LAT as a tool to scan the LLM’s “brain” and
identify patterns related to human-understandable concepts such
as truthfulness. By revealing these human-level concepts in LLMs,
RepE can be a useful tool for effectively understanding the driving
processes behind LLM generations. LAT involves three key steps:

Step 1: Designing the Stimulus and Task The core of this
step is to design stimuli and tasks that elicit distinct neural activity
within the LLM. To extract a concept, we want to present stimuli
that vary in the amount of that concept and inquire about it. For
example, when extracting the concept of truthfulness, we would use
scenarios that are definitively true or false to represent contrasting
levels. Listing 1 shows the template underlying this step:

Consider the amount of {concept} in the following:
{stimulus}
The amount of {concept} is.,

Listing 1: Eliciting neural activity - prompt template

Consider Listing 2 which shows an instantiation of the template
for the concept of truthfulness:

Consider the amount of truthfulness in the following:
Question: What is the capital of France?

Answer: Paris. P
The amount of truthfulness is.. ¢

Listing 2: Prompt for a correct response (P¢) — truthfulness

In Listing 2, the answer “Paris” is truthful, as it correctly identifies
the capital of France. Conversely, Listing 3 shows an instantiation of
a prompt with an incorrect response where the answer “Marseille”
is untruthful since it incorrectly identifies the capital of France.

Consider the amount of truthfulness in the following:
Question: What is the capital of France?

Answer: Marseille.
The amount of truthfulness is.. w

Listing 3: Prompt for an incorrect response (Py,) — truthfulness

Step 2: Collecting Neural Activity In Transformer models [75],
hidden states exist for all token positions. These hidden states
may not all be relevant to the concept at hand. To ensure that the
most relevant hidden states are collected, a token position that
appropriately captures the concept of interest needs to be identified.
For decoder models, RepE demonstrates that the most appropriate
positions are those corresponding to the concept’s tokens or the
last token position [91]. The authors use the last token position,
which we will also consider in this work. This is why Listings
2 and 3 may appear incomplete or end abruptly: we only need
the hidden states at the last token position, before any further
output is generated. To collect these hidden states, a forward pass is
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performed on the prepared stimuli. Critically, this pass is conducted
without engaging the model’s generative capabilities; we are solely
interested in the internal activations at the chosen token position
within each layer of the model. This layer-wise collection ensures
that we capture the neural activity across the model’s depth. This
step only involves separately collecting the hidden states (H) for
each of the two types of stimuli: those corresponding to correct
responses (H;) and those corresponding to incorrect responses (Hyy).
For each stimulus, the forward pass is performed independently,
and the hidden states are extracted at the designated token position
for each layer. This separation is crucial, because it allows us to
contrast the neural activity patterns associated with two instances
of opposing extremes—P, and P,,—in the next step.

Step 3: Extracting the Principal Direction In this final step,
we use the collected neural activity to find a direction in the hid-
den state space that best captures the difference between the two
extremes of the concept. The main idea is to compare the hidden
states from pairs of opposing examples (H, and H,,) to see how the
model distinguishes between them. For each pair — such as a true
versus a false scenario for truthfulness — we subtract one hidden
state from the other to get a difference vector (Hy;rs), as shown
in Figure 2a. Following subtraction, these difference vectors are
centered around their mean. Next, Principal Component Analysis
(PCA) [2] is applied to these vectors, layer by layer, to reduce dimen-
sionality and extract the primary direction of variation. Specifically,
only the first principal component (a vector) for each layer is used.
Figure 2b illustrates this process.

To ensure the extracted direction aligns with the target concept,
the original hidden state differences are projected onto these PCA
components and correlated with their corresponding concept labels
(e.g., correct label = 1, incorrect label = 0). Based on this correlation,
LAT assigns a sign (+ or —) to each PCA component. For each pair
of examples (P, and P,,) and for each layer, the projection for the
correct label (TIZC) is used. If, for example, the majority of correct
answers (label = 1) are found to have high projection values in a
layer, a positive sign (+) is assigned. Conversely, if the majority of
correct answers have low projection values, a negative sign (-) is
assigned. Figure 2c illustrates the resulting set of PCA vectors and
their associated signs, determined layer-wise.

These PCA vectors can then be used to calculate scores for new
inputs by projecting the new inputs’ hidden states on them. More
precisely, the dot product between the hidden states of a new input
and a basis vector results in a representation score.

General Pipeline RepE follows a three-phase pipeline: 1) Fit-
ting: for each layer, collect hidden states from positive and negative
stimuli, compute and normalize difference vectors, and fit a PCA to
extract the principal direction that best separates the two classes
2) Validation: project held-out data onto each layer’s principal
component and select the layer with the highest accuracy at distin-
guishing positive and negative stimuli 3) Testing: using the chosen
layer, score new instances on a test set and record accuracy.

2.2 Multiple-Choice Question Answering

Multiple-choice question answering (MCQA) is a widely used eval-
uation paradigm for assessing LLM capabilities across diverse do-
mains [35, 62, 63, 71, 50]. At its core, MCQA provides a standardized
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Figure 2: LAT overview
way to measure how well models can make correct selections when
presented with explicit choices. [15, 6, 64, 81]

A typical MCQA setup [19, 43] consists of presenting models
with a question alongside multiple candidate answers and requiring
them to select the most appropriate response. Normally, one or more
of these candidate answers are designated as correct answers, which
provides an objective ground-truth for evaluating model selections.

The MCQA setup offers three key advantages: 1) it transforms
complex reasoning into discrete selection tasks, simplifying the
evaluation process by reducing the problem to choosing among
predefined options [53, 64]; 2) it provides a controlled comparison
environment where various selection methods can be directly eval-
uated on identical tasks, enabling a systematic assessment of their
performance [15, 40]; 3) it overcomes the subjectivity of generative
QA by removing ambiguity in assessing model responses [43, 79].

RepE [91] leveraged this MCQA framework to evaluate the effec-
tiveness of its technique under an NL scenario. In their experimental
setup, models were given questions with four possible answers and
tasked with selecting the correct one. The authors then compared
different confidence metrics for making this selection: traditional
probability-based approaches, a refinement with the addition of ver-
balized confidence, and their proposed LAT method that leverages
internal representations. Section 2.3 explains the first two metrics;
Section 2.1 already explained the LAT-based metric.

2.3 Confidence Metrics

Confidence metrics can be divided into two categories:
1. Intrinsic: these rely on the model’s output probabilities, nor-
mally with no or only minimal additional processing:



Conference’17, July 2017, Washington, DC, USA

o Length-normalized sequence likelihood: sums the token-level log-
probabilities and normalizes by sequence length, avoiding bias
toward shorter or longer outputs. The candidate with the high-
est score is selected. It reflects only how likely the model is to
generate a sequence [16, 41, 68].

2. Reflective: elicit a verbal confidence rating, asking the LLM to
score its certainty on a fixed scale. These ratings are then combined
with token probabilities. We consider two variants:

® Regular: Seven verbalized levels (“Very low” to “Very high”),
mapped to a numeric scale (evenly spaced from -1 to 1) and
weighted by the model’s joint probability of generating the to-
kens corresponding to the verbalized confidence [68, 74, 42, 88].

o True/False (T/F): A binary confidence asking whether the candi-
date is correct (True or False), scored according to the model’s
assigned probability to True [68, 33].

3 APPLYING REPE TO SOURCE CODE

Adapting RepE to source code introduces unique challenges. In NL,
truthfulness is validated according to adherence and consistency
with real-world facts [10, 43]. Evaluating this is notoriously com-
plex, as models often succeed by linguistic manipulation rather than
achieving genuine natural language understanding (NLU) [10, 9].
In contrast, the typical execution-based evaluation of code is more
objective, benefiting from a closed-domain environment where cor-
rectness is tied to a specific set of test cases [16, 4]. Thus, our ground
truth for code relies on test outcomes: those that pass the reference
suite are deemed correct, those that fail are deemed incorrect, and
reference solutions are assumed correct by default.

Previous research shows that contrasting two unlabeled exam-
ples, i.e., without telling the model what these examples are, can
uncover meaningful distinctions [21, 87, 14]. Accordingly, we con-
struct pairs of code snippets, one correct and one incorrect, without
explicit labels in the stimuli.

Recall from Section 2.1 that LAT requires stimuli in the form of
structured prompts to elicit distinct neural activity about a concept—
correctness in our case. We adapt this template for code by com-
bining a task description with a code snippet. Listing 4 shows the
prompt for an incorrect implementation:
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After preparing the stimuli, we extract the model’s hidden states
at the final token for each layer (Step 2 of LAT, Section 2.1). We
repeat this process for several programming tasks, each with pairs of
correct and incorrect implementations. For each layer, we calculate
the difference between the hidden states of each pair. Next, we
normalize these difference vectors by calculating their mean and
subtracting it from each vector, centering them around zero. Finally,
we apply PCA to these normalized difference vectors to create
principal components that capture the greatest variation between
correct and incorrect implementations (Step 3, Section 2.1).

To pick the most capable layer, we evaluate each layer’s first
principal component on a held-out validation set. We then select
the layer whose component achieves the highest accuracy at differ-
entiating correct from incorrect implementations and refer to that
layer when evaluating.

During evaluation, given a new task and its set of candidate
implementations, we compute a separate LAT reading for each
candidate. However, this time we use the original LAT template
shown in Listing 1, where we explicitly mention the concept of
correctness. Listing 6 shows the evaluation prompt for one choice
candidate, the incorrect implementation of the task in this case:

Consider the amount of correctness in the following:
Task: Given a non-empty list of integers, return the sum of all of
the odd elements that are in even positions.

Code:
* " “python
def solution(lst):

sum_of_odd_elements = @

for i in range(1, len(lst), 2):

if 1st[i]l % 2 != o:
sum_of_odd_elements += 1st[i]
return sum_of_odd_elements

The amount of correctness is,,

Task: Given a non-empty list of integers, return the sum of all of
the odd elements that are in even positions.

Code:
** “python
def solution(lst):

sum_of_odd_elements = @

for i in range(1, len(lst), 2):

if 1st[i] % 2 != @:
sum_of_odd_elements += 1st[i]
return sum_of_odd_elements

Listing 4: Stimulus for incorrect code
And Listing 5 shows the prompt for a correct implementation.

Task: Given a non-empty list of integers, return the sum of all of
the odd elements that are in even positions.
Code:
© “python
def solution(lst):
return sum([x for idx, x in enumerate(lst) if idx%2==0 and x
%2==11)

Listing 5: Stimulus for correct code

Listing 6: Evaluation — prompt with a task and a candidate
implementation (incorrect implementation in this case)

For each candidate implementation, we construct an equivalent
prompt to Listing 6, with the only difference being that the Code:
block would contain the task implementation in question. We then
project the extracted hidden states onto the previously captured
representation vector using a dot product, yielding a representation
score. While this score alone does not directly classify correctness,
it enables comparison among several candidate solutions.

4 RQ1: DO LLMS POSSESS AN INTERNAL
REPRESENTATION OF CODE
CORRECTNESS?

We now investigate if LLMs maintain an internal representation

of code correctness. First, we describe the adaptation to code of

the MCQA setup (Section 2.2). Then, we present our results and

compare to existing metrics (Section 2.3).

4.1 Setup

We design our experimental setup to extract and evaluate correct-
ness representations using LAT.

4.1.1  Data Preparation. In the original RepE work, effectiveness is
evaluated using an MCQA setting where models need to select the
correct answer from four choices (Section 2.2). In a code setting, this
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corresponds to a model selecting the correct code implementation
for a given task from a given set of code snippets. To the best of
our knowledge, there is no existing code benchmark that provides
this QA format. Thus, our first step for evaluation is to construct
such a benchmark, which we make publicly available. [5]

We focus on two datasets, HumanEval [16] and BigCodeBench [90]
—summarized in Table 1—with varying levels of difficulty!. Both pro-
vide programming tasks, reference solutions, and a set of test cases
to evaluate solutions. The reference solution serves as the correct
choice for the task. For the incorrect choices, we select three addi-
tional incorrect implementations for each task to match the original
RepE methodology. For the evaluation scenario to be challenging
and realistic, these incorrect choices should be plausible attempts to
the given programming task (rather than random code snippets that
are obviously wrong). Thus, for each of the two datasets, we lever-
age generated implementation attempts from established LLMs that
failed the task’s given tests (i.e., these are incorrect solutions for the
task). We use each dataset’s leaderboard [45, 90] to select LLMs that
are reputable, i.e., trusted by the community and regularly used for
research and practical applications. These models must also provide
a balance in performance: they should not perform extremely well
(ensure they generate incorrect attempts) nor perform very poorly
(avoid unrealistic attempts).

For BigCodeBench, we select incorrect pre-generated solutions [60]
from Llama-3.3-70B, GPT-40, and Gemini 2.0 Flash. BigCodeBench’s
more complex tasks generally require larger, resource-intensive
models (often via paid APIs) to achieve satisfactory accuracy, so
we leverage its publicly available pre-generated outputs. Note that
there is only one pre-generated solution for each model in Big-
CodeBench, while we need three incorrect implementations per
task. Thus, for BigCodeBench, we select tasks on which all three
models failed. Out of the 1,140 tasks in BigCodeBench, there are 457
tasks on which all three models failed—we refer to these as QApcp.

For HumanEval, we sample the incorrect solutions from Llama-
3.2-3B, Gemma-3-1B, and Granite-3.3-2B. HumanEval’s problems
are easier than BigCodeBench’s, so smaller models achieve reason-
able accuracy. Consequently, it is also more difficult to get failing
attempts. However, because the models are smaller, we can run
them locally, which lets us generate multiple candidate solutions,
increasing the availability of failing implementations. We use each
model to generate 10 implementations for each of the 164 tasks
at temperature 1. However, because HumanEval is smaller than
BigCodeBench, we relax the constraint that all three models need
to fail. Instead, we select tasks from which we can obtain at least
three incorrect attempts from the total pool of 30 attempts per
task (10 per model). We end up with 151 tasks with three failing
implementations each— we refer to these as QAyg.

4.1.2  LAT Setup. To use LAT, we first have to capture the repre-
sentation reading using a set of stimuli. We evaluate LAT’s general-
izability via nested cross-validation (CV) under two sources of data
for the stimuli (summarized in Table 2):

Note that while BigCodeBench is considered a more complex benchmark, its average
C.C. is slightly lower than HumanEval’s. This is because C.C. primarily measures
control flow, whereas HE tasks often focus on algorithmic problems that inherently
involve more intricate control flow structures. In contrast, BCB’s complexity often
stems from factors like diverse library usage, which are not fully captured by C.C.
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Table 1: Summary of BigCodeBench, HumanEval, and MBPP+—
number of tasks, average number of test cases, average prompt and
solution lengths, and average solution cyclomatic complexity (C.C.).

Tests (Avg.) Prompt (Avg.) Solution (Avg.)

Benchmark Nature # Tasks

# Cov. Char Line Char. Line C.C.
MBPP+v0.2.0  Beginner-friendly 378 3.1 99% 916 10 1211 61 22
HumanEval Interview-level 164 7.8 98%  450.6 13.7 180.9 6.8 3.6
BigCodeBench Real-world challenges 1,140 5.6 99%  663.2 11.7 4260 10.0 3.1

Table 2: Data splits for different setups. Each Fit/Val split contains
one correct and one incorrect implementation; each Test split con-
tains one correct and three incorrect implementations.

Metric Setup Name Fit Val Test

HumanEval (HE) - QAgg = 151 tasks

Intrinsic Standard

Regular
T/F

LATID  Fity

Reflective 80% of QApg

(121 tasks)

10% of QAgg (15 tasks) 10% of QApg (15 tasks)

LAT OOD Fityppp, 25% of MBPP+ (24 tasks) ~ 25% of MBPP+ (24 tasks)
Fitsyn 25% of Synthetic (5 tasks) ~ 25% of Synthetic (5 tasks)

BigCodeBench (BCB) — QApcp = 457 tasks

Intrinsic Standard

Regular
T/F

LATID  Fitgeg

Reflective 80% of QApcB

(367 tasks)

10% of QApcp (46 tasks) 10% of QApcp (46 tasks)

LAT OOD Fitpppp+ 25% of MBPP+ (24 tasks) ~ 25% of MBPP+ (24 tasks)
Fitsyn 25% of Synthetic (5 tasks) ~ 25% of Synthetic (5 tasks)

In-distribution (ID). The source of the stimuli data for fitting
(Fit) and validation (Val) is the same as the test data source, but the
data points are disjoint. On each benchmark (BigCodeBench and
HumanEval) we run standard 10-fold CV:

e In each fold, we split tasks into (i) 10% for fitting (Fitgcp/HE),
(ii) 10% for validation (Valgcp/yE), (iii) 80% for testing ( Testgcp/HE)-

e For Fit/Val, we pair each reference solution with one randomly
sampled incorrect implementation.

o We fit a layer-wise PCA on Fit, select the best layer on Val, and
measure accuracy on Test.

e We report the mean =+ std dev of accuracy over the 10 folds.

Out-of-distribution. In this case, the data we use for Fit and
Val comes from a different data source than that used for Test.
Accordingly, we keep the 10 (outer-)folds defined by the 80% Test
splits above, but fit and validate on external stimuli:

e We draw the rest of the 20% from two sources: (1) Synthetic:
prompting Llama-3.2-11B-Vision-Instruct [3] to generate 20 pro-
gramming tasks, along with a correct and incorrect solution for
each. (2) MBPP+: a code generation benchmark with reference
solutions [4, 45] (Table 1). We use GPT-4 failed attempts from
EvalPlus [72] as incorrect solutions, resulting in 97 tasks with
both correct and incorrect solutions.

e For each source, we run a 4-fold inner CV: (1) Each inner-fold
allocates 25% of stimuli for fitting, 25% for validation. (2) Fit
layer-wise PCA on the inner Fit split, pick the best layer on inner
Val, measure accuracy on Test.

e For each outer-fold and OOD source, average the 4 inner accura-
cies (mean + std dev), then report the mean + std dev across all
10 outer-folds.

For evaluation purposes, we report two kinds of LAT accuracy:
LAT (Val) uses the layer selected by the validation sets (realistic
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Intrinsic

Reflective - Regular

Reflective - True/False

LAT

Answer Average
Selectio | log-1ikelinood of the
n

Sum of log-likelihood of
<pre-filed choice>

Sum of log-likelihood of
True

LAT reading at
representation token (last)

Task:
<programming
task>

Code:

**“python
<implementation
>

Template

What is the amount of
<concept> of the following
scenario? Please answer
using EXACTLY one of the
following:

- Very low

- Very high

Task:
<programming task>
Code:

“python

Does the following code
exhibit <concept>?
Please answer with True
or False.

Task:
<programming task>
Code:

**python
<implementation>

True

Consider the amount of
<concept> in the
following code.

Task:
<programming task>
Code:

**“python
<implementation>

The amount of <concept>
in the code is

<implementation>

<pre-filled choice>

Figure 3: Prompt template for correctness evaluation.
performance), while LAT (Best) selects the optimal layer based on
the Test set (theoretical upper bound).

4.1.3  Accuracy and Baselines. We assess how well different confi-
dence metrics identify the correct implementation among multiple
candidates. We measure this through accuracy, defined as the pro-
portion of test tasks for which the correct solution was selected.
For each task, the implementation with the highest score according
to the confidence metric is chosen as the predicted solution.

As comparison baselines for LAT, we (1) use Random to ran-
domly select implementations uniformly and (2) use the intrinsic
and reflective confidence metrics described in Section 2.3. Figure 3
shows the prompt templates used to feed tasks and implementations
to the model during the evaluation phase (not fitting).

4.14 Target Models. Mistral-7B-Instruct-v0.3, Qwen2.5-Coder-7B-
Instruct, OpenCoder-8B-Instruct, and CodeLlama-7B-Instruct. From
now on, we refer to these using the short forms Mistral, Qwen,
OpenCoder, and CodeLlama, respectively. Our selection criteria
were: (1) Open-source: required for extracting internal activations.
(2) Consistency: Mistral was used in the original RepE work. (3)
Comparable: models have 7-8B parameters for fair comparison
without confounding effects from large size differences. (4) Code:
Besides Mistral, we used three code-specialized models to evaluate
LAT on different domains: general vs. code.

4.2 Results

Tables 3 and 4 compare the results of our LAT-based correctness
representation extraction against the baseline confidence metrics
on BigCodeBench and HumanEval, respectively. We first explain
what we would hope to see in these tables. If LLMs have an inherent
notion of correctness, then the verbalized confidence metrics (i.e.,
reflective) should have an accuracy higher than standard purely
probabilistic metrics (i.e., intrinsic). However, even reflective met-
rics rely on a form of probability rather than reflect any inherent
internal characteristics of the model. Therefore, if LAT can success-
fully capture internal representations of correctness, then we expect
that LAT has an accuracy even higher than reflective metrics.

4.2.1 Overall Performance. We observe three patterns in Tables 3
and 4. First, the intrinsic (standard) metric on BigCodeBench hovers
around 5-6% for all models, whereas on HumanEval it ranges from
21%-37%, reflecting the latter’s lower difficulty. Second, reflective
variants are inconsistent. For example, on BigCodeBench, the true/-
false variant outperforms the regular variant for Qwen (41.1% vs.
38.0%) but underperforms for Mistral (23.7% vs. 28.9%). In contrast,
on HumanEval, Mistral’s reflective regular accuracy (40.6%) exceeds
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its true/false accuracy (15.3%), while Qwen scores around 7% on
both. Third and most importantly, LAT consistently outperforms all
baselines. On BigCodeBench, it improves accuracy by +13.3 to +29.0
pp over the best reflective accuracy; on HumanEval, gains range
from +8.7 to +26.2 pp over the strongest baseline. These results
show that capturing correctness from neural activity yields a more
stable correctness signal than intrinsic and reflective confidence.
Throughout the paper, we use Generalized Estimating Equations
(GEE) logistic regression with Benjamini-Hochberg correction (p <
0.05) for significance testing.

4.2.2  Out-of-Distribution Generalization. We now analyze how
well correctness representations transfer across datasets. On Big-
CodeBench, fitting on MBPP+ yields between 25.8% to 47.8% accu-
racy with 3 out of 4 models above random but below in-distribution
LAT (50.3%-56.3%). Synthetic fitting is erratic: two models drop
below random (Qwen at 12.2%, CodeLlama at 22.2%), while Mis-
tral and OpenCoder exceed it. On HumanEval, MBPP+ fitting stays
above random (32.2%-39.9%), but below in-distribution LAT (41.4-
60.7%). Synthetic fitting can match or exceed in-distribution LAT
for some models (e.g., Qwen at 63.0% vs. 60.7%; OpenCoder at 47.8%
vs. 44.0%), yet fails for others. A different, yet related, observation
is the standard deviation’s pattern. In-distribution fitting shows
higher variance (e.g., £10.6% under Mistral in BigCodeBench) com-
pared to the lower variance observed in out-of-distribution fitting
(e.g., £0.8% under Mistral in BigCodeBench using Fitygpp,). This
suggests a specialization versus generalization trade-off: fitting on
in-distribution data achieves higher accuracy by specializing in data
nuances (low bias), but this specialization leads to higher instability
(high variance) when those nuances are missed across folds. On
the other hand, fitting on out-of-distribution data captures more
general features, despite leading to lower accuracy.

4.2.3 Model-Specific Insights. The magnitude of LAT s improve-
ment compared to each model’s strongest baseline reveals model
differences. On BigCodeBench, OpenCoder gains the most (+28.8 pp
from 27.5% to 56.3%), followed by CodeLlama (+22.8 pp), Mistral
(+22.2 pp), and Qwen (+13.3 pp). On HumanEval, Qwen shows the
largest increase (+26.2 pp from 36.8% to 63.0%), then OpenCoder
(+11.3 pp), CodeLlama (+10.8 pp), and Mistral (+8.7 pp). These pat-
terns suggest that while all models embed a correctness signal, its
strength varies by training regime and task complexity. This is con-
sistent with research highlighting that LLMs’ ability to generalize,
rather than merely memorize solutions, varies across models and
different types of evolved coding tasks. [17].

4.2.4 Validation vs. Best Layer Selection. We compare LAT (Val),
which selects layers via held-out validation, against LAT (Best), the
theoretical upper bound. Across models and datasets, the gap rarely
exceeds 7pp for in-distribution fitting. On BigCodeBench, Qwen
scores 54.4% (Val) vs. 57.1% (Best) and, on HumanEval, Mistral scores
49.3% vs. 53.8%. The greatest gap is OpenCoder with a difference
of 12.5 pp between 44% (Val) and 56.5% (Best). Still, the proximity
indicates that validation-driven layer choice reliably approximates
the optimal layer without test-set leakage.
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Table 3: LAT vs. baseline confidence metrics on Testgcp — * indicates statistically significant improvement over all baselines (p < 0.05).

Model Random Intrinsic Reflective LAT (Val) - Ours LAT (Best)

Standard Regular True/False Fitgcp Fityppp+ Fitsyn Fitgcp Fitygpp+ Fitsyn
Mistral 57% +04 289%+0.8 237%+0.0 51.1% + 10.6" 47.8% +0.8" 33.0% +0.1" 57.9%+45 593%+0.9 484% +0.5
Qwen 5.0%+03 380%=+0.7 41.1%+0.8 54.4% + 3.8" 40.2% + 0.9 12.2% + 0.8 57.1% + 2.7 55.7% +0.7 39.4% + 0.5

CodeLlama 27.5%

OpenCoder

48% +04 247%+04 23.7%+0.0
64% + 04 245%+13 273%+0.5

50.3% + 6.2*
56.3% + 5.1*

25.8% £ 0.3
29.5% + 0.3

22.2% + 0.7 55.0% +£3.0 48.2% 0.9 39.0% +0.7
30.5% = 0.7 60.0% +28 44.2% +0.7 442% +1.2

Table 4: LAT vs. baseline confidence metrics on Testgr — * indicates statistically significant improvement over all baselines (p < 0.05).

Model Random Intrinsic Reflective LAT (Val) - Ours LAT (Best)

Standard Regular True/False Fitgp Fitypp+ Fitsyn Fitgg Fitygpp+ FitSyn
Mistral 213% £33 40.6% 2.7 153%+27 49.3% +7.0° 39.9% +2.2 38.1% + 14 538% +72 584%+12 47.6% 1.7
Qwen 30.6% 36.8% + 3.1 7.0% + 1.1 6.7% £ 0.9  60.7% + 83" 39.6% + 13 63.0% + 2.0 67.8% +4.6 656%+18 652%+1.9
CodeLlama : 213% £25 289%+21 265%+0.0 414%+6.4" 32.2%+1.0 255% + 13 52.7% +£45 49.6% +2.1 46.7%=+1.5
OpenCoder 36.5% + 3.9 31.0% + 2.5 9.9% + 1.6 44.0% +83* 351%+ 18 47.8% +3.0° 56.5% +3.1 524%+2.8 56.6% + 3.9

RQ1: Key takeaway

LAT successfully extracts meaningful correctness represen-
tations from neural activations, significantly outperform-
ing random chance and surpassing intrinsic and reflective
confidence metrics across both benchmarks and all mod-
els. On BigCodeBench, LAT improves accuracy by +13.3
to +28.8 pp over the best baseline; on HumanEval, gains
range from +8.7 to +26.2 pp.

5 ROQ2: CAN LEVERAGING INTERNAL
CORRECTNESS REPRESENTATIONS LEAD
TO MORE EFFECTIVE CORRECTNESS
RANKING?

Based on RQ1, we know that LAT can capture an internal notion of
correctness that distinguishes correct from incorrect solutions. In
RQ2, we explore using LAT to rank multiple generated solutions by
estimated correctness. Traditionally, developers prompt LLMs for
code, then evaluate outputs manually or with tests, often requiring
several attempts. LAT can shortcut this by ranking candidates so
the most correct are near the top, making it easier to select a correct
implementation from a small set.

5.1 Setup

To evaluate LAT’s ranking ability, we test whether it can effectively
order multiple generations by correctness.

5.1.1 Data Preparation. We focus on both HumanEval and Big-
CodeBench, using the same tasks and reference solutions as RQ1
for fitting and validation in both in-distribution (Fitgg/ Valyg and
Fitgcp/ Valgcp) and out-of-distribution (Fitsyn/ Valsy, and Fitygpp./
Valpppp.). For testing, we use the same 121 tasks from Testyg and
367 tasks from Testgcp established in RQ1. For each task and model,
we generate 10 diverse code samples (temperature = 1.0), yielding
1,210 samples per model for HumanEval and 3,670 for BigCodeBench.
The goal is to assess each model’s ability to rank its own outputs,
similar to self-correction.

5.1.2  LAT Setup. We use the fit, validation, and test splits from the
first fold of RQ1 to ensure consistency across models and tasks while
simplifying the evaluation. The ranking process involves fitting
correctness representations on the designated Fit set, selecting the
optimal layer using the Val set, and applying the learned vector to
score and rank the generated implementations in the Test set.

5.1.3 Accuracy and Baselines. We evaluate our ranking approach
using pass@rank-k metric, which measures the percentage of pro-
gramming problems where at least one functionally correct solution
(verified by test execution) appears within the top k positions. For-
mally, for a set of problems P and rank threshold k:

1
pass@rank-k = — Z I[3i < k : correct(rank;(p))]
Pl 24

where rank; (p) denotes the i-th ranked implementation for prob-
lem p, correct(-) indicates whether the implementation passes all
unit tests, and I[-] is the indicator function that returns 1 if the
condition is true and 0 otherwise.

We report pass@rank-k for k € {1,...,5} on HumanEval and
BigCodeBench to quantify the trade-off between the number of
candidates and the probability that at least one in the top k is correct.
Note that unit tests are only used to evaluate the ranked outputs,
not during the ranking process. In addition to Random, Intrinsic,
and Reflective metrics, we compare against these baselines:

e pass@1 (baseline): Fraction of problems where a single imple-
mentation passes all tests, representing single-attempt perfor-
mance. We use temperature = 0.2 to balance greedy decoding
(temperature = 0, which always selects the most likely token
at each step) and diversity, helping avoid local minima while
keeping solutions focused—in line with previous research [16].
Note that this pass@1 baseline measures success using a single
generation (N = 1), while pass@rank-1 evaluates the top-ranked
solution selected from the set of 10 diverse generations (N = 10).

o pass@10 (ceiling): Fraction of problems where at least one of 10
implementations (same set used for pass@rank-k) passes all tests
(N = 10). We sample with temperature = 1, as this value should
raise with the number of samples [41], to encourage diversity and
maximize the chance of at least one correct solution, reflecting
exploration rather than single-attempt success.
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o RankEF: We also compare to RankEF [69], a multi-task learn-
ing approach leveraging execution feedback to improve code
ranking. During training, RankEF integrates classification labels
and execution feedback to better distinguish correct from incor-
rect candidates. We report pass@rank-k for RankEF on the same
BigCodeBench and HumanEval test sets. Since no ready-to-use
RankEF ranker was available, we reproduced the training process
from the RankEF GitHub repository. Following the original paper,
we used CodeT5+ [77] as the base model, further trained on 5,000
APPS [25] training tasks. For each task, we generated 100 sam-
ples with CodeT5+ and collected execution feedback for training.
The model was trained using the described multi-task learning
framework with hard parameter sharing. The authors report that
training a CodeT5+-based RankEF model this way generalizes
well and can rank generations from other models and datasets.
Thus, we train a single RankEF model and use it to rank gener-
ations from all models in our experiments, where each model
produces 10 candidate implementations per task. To validate our
reproduction, we compared our results to the authors’ reported
scores on CodelLlama, the LLM both works have in common.
Our reproduced ranker achieves slightly higher accuracy, likely
because our evaluation ranks 10 candidate implementations per
task, while the original work ranks 100.

5.2 Results

Figures 4-5 and Tables 5-6 summarize the results of RQ2.

5.2.1 Overall Performance. Our LAT-based ranking approach demon-
strates significant improvements over the pass@1 baseline across
both benchmarks, particularly as more candidates are considered
(k > 1). While simpler rankers like Random or Intrinsic show
some gains, our LAT-based fittings (Fityg/Fitgcp, Fitppppy, Fitsyn)
consistently provide a more robust path to higher accuracy. On
the HumanEval benchmark, this benefit is often immediate. For
instance, Mistral’s accuracy with Fitgg is 41.3% at Rank-1, well
above its 34.7% pass@1 baseline and the 38.0% achieved by Random
selection—Figure 4. On the more challenging BigCodeBench bench-
mark, where all models have lower baseline accuracies, the advan-
tage of LAT-based ranking becomes even clearer at higher ranks,
consistently outperforming the baselines and narrowing the gap
to the pass@10 performance ceiling (See Figure 5). Compared to
RankEF, an approach that needs a full fine-tune procedure on ex-
ecution feedback, our LAT-based technique achieves competitive
or superior accuracy without requiring expensive training or test
execution, demonstrating the value of our lightweight ranking
(see Section 6.2). Numerically, LAT shows superior or comparable
accuracy to all baselines, including RankEF, across most settings.
Only a few comparisons reached statistical significance.

5.2.2  Performance on HumanEval. Figure 4 details the results for
HumanEval. The four panels highlight that while different models
benefit from ranking to varying degrees, the LAT-based fittings
are consistently effective. For Mistral, the Fityg and Fitsy, fittings
provide the strongest performance, starting at 41.3% and reaching
64.5% and 62.0% respectively at k = 5, significantly outperforming
all alternative methods and nearing the 67.8% ceiling. Notably, both
LAT fittings surpass RankEF, which in comparison achieved 35.5%
at k = 1 and 59.5% at k = 5. Qwen, with a very high 85.1% pass@1
baseline, still benefits from LAT ranking. Its Fityg and Fitsy, fittings
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Table 5: Comparison of Random, Intrinsic, Reflective, LAT, and
RankEF pass@rank-1 accuracy (%) on HumanEval using Testyg.
LAT (Val) - Ours

Intrinsic Reflective

Model Random RankEF
Standard Regular T/F  Fityg Fityppp Fitsy,

Mistral 38.0% 33.9% 26.4% 33.9% 41.3% 35.5% 41.3% 35.5%

Qwen 64.5% 80.2% 24.8% 26.4% 85.1% 28.1% 85.1% 81.0%

CodeLlama 35.5% 39.7% 31.4% 30.6% 35.5% 30.6% 31.4% 34.7%

OpenCoder 76.9% 76.0% 64.5% 63.6% 63.6% 70.2% 80.2% 75.2%

—e— Fit_HE Fit MBPP+  —e— Fit Syn -e- Random -e- Intrinsic e - Reflective ReflectiveTF - RankEF

Model = Mistral 78 v0.3 Model = Qwen2.5 Coder 78

pass@10 ceiling

70 pass@10.ceiling 70

Pass@rank-k (%)
P
g

1 2 3 4 5 1 2 3 4 5
Model = CodeLlama 78

pass@10 ceiling

Pass@rank-k (%)
m
8

3
Rank-k

3
Rank-k

Figure 4: Accuracy of different ranking methods for HumanEval
compared to the pass@1 baseline and pass@10 ceiling.

match the baseline at k = 1 and climb to 95.0% and 93.4% respec-
tively by k = 5, almost reaching the 95.9% ceiling. This shows that
even for highly capable models, LAT can effectively identify the
best among several good candidates. CodeLlama presents an in-
teresting case where the Intrinsic metric is surprisingly effective,
outperforming other methods at several ranks. This is likely due
to the self-ranking context, where the model’s generation proba-
bilities are a strong ranking method, even though it depends on
how well a particular model’s output probabilities reflect actual
correctness. However, our LAT-based fittings still show competitive
performance, with Fityp and Fitsy, reaching 57.0% at k = 5. Here,
RankEF (34.7% at k = 1, 55.4% at k = 5) also shows competitive
performance, though our LAT fittings remain higher. For Open-
Coder, Fitsy, and Fityppp, provide the most substantial gains over
its 78.5% baseline, reaching 88.4% and 86.0% at k = 3, respectively,
demonstrating the power of out-of-distribution signals. Across all
models, the Reflective ranking methods consistently underper-
form, often doing worse than Random. This suggests that simple
self-correction signals are unreliable, reinforcing the need for the
more sophisticated capturing of correctness provided by LAT.

For easier reference, Table 5 summarizes the pass@rank-1 ac-
curacy for all models and ranking methods on the HumanEval
benchmark. LAT-based fittings achieve the best rank-1 performance
for Mistral (41.3%), Qwen (85.1%), and OpenCoder (80.2%), while
CodeLlama benefits most from its Intrinsic metric (39.7%). Notably,
our approach outperforms RankEF across all models.
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Table 6: Comparison of Random, Intrinsic, Reflective, LAT, and
RankEF pass@rank-1 accuracy (%) on BigCodeBench using Testpcp.

Model Random Intrinsic Reflective LAT (Val) - Ours RankEF
Standard Regular T/F Fitgcg Fityppp Fitsyn

Mistral 3.5% 3.0% 3.5% 2.5% 1.4% 3.8% 5.7% 4.1%

Qwen 5.7% 5.2% 3.0% 4.6% 4.9% 7.1% 5.2% 6.0%

CodeLlama 1.6% 2.7% 2.5% 1.9% 0.8% 1.6% 2.7% 3.3%

OpenCoder 7.6% 6.8% 6.8% 8.2% 6.8% 8.2% 8.4% 8.2%

5.2.3 Performance on BigCodeBench. Figure 5 shows the results
on the more difficult BigCodeBench benchmark. For Mistral, the
Fitsy, fitting is the most effective, improving from 5.7% at k = 1 to
10.4% at k = 5, consistently staying above all other methods. Fitsy,
already outperforms RankEF at rank-1 (5.7% vs. 4.1%) and maintains
a clear lead across all ranks, reaching 10.4% at rank-5 compared to
RankEF’s 8.2%. In contrast, we find that by rank-2, RankEF does
not outperform the Random baseline. Qwen sees all three LAT-
based fittings surpass the baselines and alternative methods by
k = 2, with Fitgcp and Fitsy, reaching 16.9% and 16.6% at k = 5.
CodeLlama struggles on this benchmark, only able to surpass
the pass@1 baseline and non-LAT methods by rank k = 3. Here,
RankEF performs best at k = 1 (3.3%), suggesting that execution
feedback may be particularly valuable when models struggle with
task difficulty. However, despite the lower start at rank-1 (2.7%) and
tying RankEF at rank-2, Fits,, provides the highest accuracy for
the remaining ranks, achieving 9.5% at k = 5. OpenCoder shows
significant gains with out-of-distribution fittings. The Fitsy, curve
rises sharply with Fitygpp, catching on by rank k = 4, eventually
reaching 21.0% and 20.2% at k = 5, surpassing the 11.4% baseline
and demonstrating that LAT-based ranking is more effective than
non-LAT methods. On this benchmark, the Intrinsic metric is far
less effective than on HumanEval, highlighting its unreliability as
a general strategy. In contrast, the LAT-based fittings, particularly
Fitgyn, prove to be a consistently effective method for improving
performance across all models on BigCodeBench.

Table 6 summarizes the pass@rank-1 on the more challenging
BigCodeBench benchmark. Overall, LAT’s Fits,, fitting achieves
top performance for Mistral (5.7%) and OpenCoder (8.4%) while
LAT’s Fitygpp achieves the highest score for Qwen (7.1%). With
the exception of CodeLlama, LAT-based ranking achieves higher
accuracy than RankEF for all models at rank-1.

5.24  Out-of-distribution Generalization. A key strength of our ap-
proach is its ability to generalize. On HumanEval, although the in-
distribution Fityg fitting often leads, the out-of-distribution Fitsy,
fitting matches or exceeds it at low k for Mistral and Qwen. This con-
trasts with our MCQA setup (RQ1), where incorrect options came
from other models and out-of-distribution fittings underperformed.
In RQ2, all candidates are self-generated, so a model’s internal cor-
rectness signal may align more consistently. For OpenCoder, Fitgyn
achieves 80.2% at k = 1, versus 63.6% for Fityp. Notably, the out-
of-distribution Fitsy,’s generalization outperforms RankEF for all
ranks despite RankEF’s more specialized training, highlighting the
transferability of LAT correctness patterns.

On BigCodeBench, out-of-distribution fittings (Fitsyn, Fitpppp.)
frequently outperform Fitgcp. For Mistral and OpenCoder, Fitsy, is
top across almost all ranks. This robust transfer suggests a single
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Figure 5: Accuracy of different ranking methods for BigCodeBench
compared to the pass@1 baseline and pass@10 ceiling.

well-fitted LAT can rank solutions on new tasks without any in-
distribution data and often better than an in-distribution fit.

5.2.5 Rank Threshold Analysis. Across both benchmarks, accuracy
consistently improves as the rank threshold k increases from 1 to 5,
demonstrating that the LAT-based method effectively favors correct
solutions from the candidate pool. While the top-ranked solution
(k = 1) is not always correct, expanding consideration to the top 3 or
5 candidates captures most of the achievable performance, rapidly
approaching the pass@10 ceiling. For example, on HumanEval,
Mistral improves from its 34.7% pass@1 baseline to 64.5% at k = 5
with Fitgg, closing most of the gap to its 67.8% ceiling. A similar
pattern holds on BigCodeBench, where OpenCoder jumps from an
11.4% baseline to 21.0% at k = 5 with Fitsy,. Comparing growth
trajectories between LAT and RankEF reveals model-dependent
patterns. For Mistral, LAT’s Fitsy, starts higher at rank-1 (5.7%
vs. RankEF’s 4.1%) and maintains its lead through rank-5 (10.4%
vs. 8.2%). For Qwen, Fitgcp and Fitgy, start lower at rank-1 (4.9%
and 5.2% vs. RankEF’s 6.0%) but overtake RankEF by rank-2 (10.1%
and 10.6% vs. RankEF’s 6.8%), showing steeper improvement. For
CodeLlama, LAT’s Fitsy, ties RankEF at rank-2 (5.2%) and then
surpasses it at rank-3 onwards, reaching 9.5% at rank-5 versus
RankEF’s 9.0%. For OpenCoder, LAT’s Fits;, shows competitive
or superior performance across all ranks. Overall, LAT fittings
demonstrate a pattern of rapid early improvement (rank-1 to rank-
3), effectively catching up to and surpassing RankEF even when off
to a slightly lower start for CodeLlama.

5.26 Model-Specific Insights. On HumanEval, models with lower
baselines like Mistral see the largest relative gains (an 85.9% rel-
ative improvement from pass@1 to k = 5 with Fityg). For high-
performing models like Qwen, LAT is still able to push it towards
its ceiling. RankEF also shows consistent improvements over the
pass@1 baseline, but LAT’s best fittings achieve comparable or
superior gains. For Mistral, LAT’s Fityg achieves +29.8 points over
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pass@1 (vs. RankEF’s +24.8), while for OpenCoder, Fityp achieves
+12.4 (vs. RankEF’s +9.1). For CodeLlama, LAT’s gains with Fitgy,
are +15.7 points, compared to RankEF with +14.1 points.

On the more challenging BigCodeBench benchmark, these model-
dependent patterns highlight the robustness of our ranking ap-
proach. Qwen improves its accuracy by 9.5% absolute points (from
7.4% to 16.9% at k = 5 with Fitgcp), while OpenCoder achieves a
9.6% absolute gain (from 11.4% to 21.0% with Fitsy,). The consistent
success of the Fitsy, fitting, especially on BigCodeBench, suggests
that training on a diverse, synthetic dataset equips the LAT model
with a strong and generalizable understanding of code correctness.

RQ2: Key takeaway

LAT-based ranking outperforms pass@1 baseline, intrinsic,
and reflective methods on HumanEval and BigCodeBench
across all models. LAT showed significant gains by rank
k = 3 and further closed most of the gap to the pass@10
ceiling by rank k = 5. Except for CodeLlama, LAT achieved
higher accuracy than RankEF for all models at rank-1. A
key finding is the effectiveness of out-of-distribution fit-
tings (Fitsy, and Fityppp,), which highlights LAT’s poten-
tial to reduce costly test executions and generalize to new
tasks without requiring in-distribution data.

\. J

6 DISCUSSION

We now discuss the implications of our findings in terms of practical
utility, differences between our approach and training-based ones,
as well as directions for future research.

6.1 Practical Utility

The ability to capture internal correctness representations has prac-
tical applications for developers. Our ranking method in RQ2 shows
that these representations can be used to select promising code solu-
tions without running tests [31]. In essence, when an LLM generates
multiple code solutions, our method can filter out incorrect can-
didates and highlight promising ones. Thus, developers can focus
their verification efforts on a smaller set of top-ranked solutions,
rather than having to examine every candidate. It could even be
used “behind the scenes” where the LLM-based generation system
internally generates multiple candidates and returns only the high-
est ranked candidate to the developer, effectively increasing the
accuracy of the single generation the developer sees. Beyond this,
our technique can be integrated into the software development
life cycle. Since our approach captures relative correctness, it is
best suited for comparing code changes. For example, in a CI/CD
pipeline, it can flag changes where the new code appears less correct
than the previous version, and prioritize test cases based on which
code is deemed less correct. [82] In IDEs, it can provide confidence
scores for code suggestions relative to the current implementation,
or compare multiple suggestions against each other. [58].

6.2 Fitted Representations vs. Trained Rankers

Our accuracy comparisons with RankEF showed superior or com-
parable results. We discuss some additional practical advantages
that our LAT-based ranking approach offers over trained rankers.
Setup cost and data efficiency. RankEF requires training a sepa-
rate ranker model on thousands of code samples, which is memory-
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and compute-intensive. Moreover, gathering execution feedback for
RankEF’s training dataset requires running test suites on thousands
of generated samples, adding substantial overhead to the setup. Re-
producing RankEF involved 72 GPU-hours for sample generation,
10 CPU-hours for execution feedback collection, and 90 GPU-hours
for model training on an NVIDIA A100 (peak memory: 60GB). Our
technique, by contrast, is fitted rather than trained—requiring only
PCA fitting on a small dataset. Average fitting time (PCA + Vali-
dation) is 3.75 seconds. This is computationally inexpensive and
data-efficient, which is especially evident from our synthetic fit-
ting set of only of 5 triplets of tasks with correct and incorrect
implementations that fits in around 1 second.

Flexibility and adaptability. The lightweight fitting process makes
our approach more adaptable. Should correctness criteria evolve
(e.g., from ‘correctness’ to ‘readability’ or ‘adherence to new style
guidelines’), our technique can be re-fitted on a small set of relevant
examples. Training-heavy approaches like RankEF would require
expensive re-training with large datasets.

Inference and generalizability trade-offs. Our technique re-
quires extracting hidden states during generation, resulting in
higher per-task inference time (0.399s vs. RankEF’s 0.202s). How-
ever, this ~0.2s overhead per task is negligible compared to the
amortized setup cost: RankEF’s 172 GPU+CPU-hours would need
to rank roughly 3 million tasks to break even on compute cost alone.
For practical scenarios, LAT’s lightweight setup far outweighs its
inference overhead. Additionally, while our approach is model-
specific (representations captured from one LLM cannot be applied
to another’s hidden states), a model and its fitting can rank code
solutions from any source. RQ1 demonstrates this, where a choice
was made on candidates from different sources: reference solution
and other LLMs (see Section 4.1.1).

6.3 The Nature of Internal Correctness

Our findings strongly indicate that LLMs develop an internal rep-
resentation of code correctness—in line with similar observations
in reasoning models [84]. More concretely, the core finding is that
correctness representations extracted via RepE outperform base-
line confidence metrics [66]. In RQ1, LAT improves accuracy over
reflective baselines on both BigCodeBench and HumanEval. In RQ2,
LAT-based ranking improves direct pass@1 performance and ap-
proaches the pass@10 ceiling. Overall, this indicates that a correct-
ness signal captured from the model’s internal states provides a
more stable indicator of correctness than the model’s output proba-
bilities, which are poorly calibrated with correctness [68]. In this
work, we showed that this signal exists and can be leveraged but
not why or how it exists. Is the model learning a deep semantic
understanding of the code’s logic? Or is it learning more superfi-
cial pattern recognition based on syntactic structures and token
sequences that correlate with correctness in the training data? It
would be interesting to explore this distinction in future work.

6.4 Beyond Functional Correctness

In this paper, we focused on functional correctness, which can be
objectively verified using tests. Since the represented concept de-
pends on the contrasting stimuli presented to the LLM, future work
could explore whether LAT can also capture other non-functional
properties such as maintainability or efficiency [76, 1].
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7 THREATS TO VALIDITY

Construct Validity. We use passing unit tests as a proxy for cor-
rectness, while tests may fall short when it comes to non-functional
aspects (e.g., performance and readability). There are two factors
that can affect the correctness representation captured by LAT: the
stimuli used and the model layer chosen to capture the correctness
signal. Since our primary goal in this paper is to rigorously explore
if RepE can be used for code correctness, we carefully adhered to
the same stimulus setup and layer selection used in the original
work to ensure methodological consistency. Specifically, we employ
a robust selection method that verifies which layer has the highest
accuracy on a validation split. We also evaluate on two different
benchmarks (HumanEval and BigCodeBench), combining ID and
OOD stimuli, and doing CV.

Internal Validity. Prompt formatting choices or verbalized con-
fidence levels could influence our observations. We reduce prompt
bias by using prompt designs that are consistent with prior work.
The sourcing of candidate solutions also differs between RQ1—
where incorrect options come from other LLMs—and RQ2—where
variants are self-generated—which may partly explain divergent
out-of-distribution behavior. Evaluating both settings exposes how
candidate origin impacts performance. Also, collecting incorrect
implementations from existing LLMs could introduce bias if those
models share training data or produce similar errors to the target
model. We address this by collecting failing solutions from multiple
reputable models and using an established evaluation harness [59]
and benchmarks (HumanEval and BigCodeBench)

External Validity. We evaluate the accuracy of four 7-8B pa-
rameter LLMs on two Python benchmarks (HumanEval and Big-
CodeBench). To improve generalization, we include both general
and code models, evaluate on benchmarks with differing degrees of
complexity, and test LAT on OOD data (synthetic and MBPP+). How-
ever, the observed LAT effectiveness and ranking improvements
may not hold for larger or smaller models, different architectures, or
other programming languages. Our single-function evaluation does
not cover some aspects of real-world code, e.g., multi-file projects or
integration tests, potentially found in repository-level benchmarks
such as SWE-Bench [32]. We see our work not as a direct tool for
such settings, but as a component within an LLM-based agent’s
strategy. We plan to explore such settings as future work.

8 RELATED WORK

LLMs have improved developer productivity and efficiency [29],
but concerns remain about the quality of generated code, including
incorrectness [78] and security vulnerabilities [57].

Recent work has explored training neural rankers to select code
solutions without test execution. CodeRanker [31] uses fault-aware
classification to predict program correctness. RankEF [69] improves
upon this with multi-task learning on execution feedback, enabling
it to learn failure causes.

Many studies focus on estimating LLM confidence and improving
calibration. Traditional methods often use output probabilities [26],
few-shot prompting [34], or verbalized confidence [74]. However,
neural networks are often miscalibrated [24], and standard metrics
may not reliably reflect correctness in code generation [68, 54],
with added concerns in cyber threat intelligence [49].
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To address these issues, recent work explores more sophisti-
cated confidence metrics. One approach infers confidence from the
consistency of multiple generated outputs [37], linking program
similarity to correctness and reducing errors. Similar consistency-
based methods have been applied to NL tasks [85].

LLM internal states have also been leveraged for confidence
estimation, such as through contrastive learning across layers [8]
or by weighting tokens using attention values [44], reinforcing the
potential of internal signals for output quality.

Al interpretability and transparency are increasingly impor-
tant [38, 67]. Representation engineering [91] systematically studies
how concepts are encoded in hidden states and has been used to
detect and control issues like dishonesty in NL.

Bui et al. [13] also use LLM internal states for code correctness,
but classify single programs, while we rank candidates. Our method
uses RepE to capture differences between correct and incorrect
programs, unlike their separate classifier approach.

Huang et al. [30] use internal states for line-level risk assessment,
flagging potentially incorrect code. Their classification-based setup
(on tasks like code repair, translation, and editing) differs from our
ranking approach and program synthesis benchmarks we used.

9 CONCLUSION

In this work, we demonstrated that LLMs encode meaningful inter-
nal representations of code correctness. We adapted RepE to source
code, validated its effectiveness on HumanEval and BigCodeBench,
and demonstrated that our representation-based selection method
outperforms basic output probabilities and reflective confidence
metrics. We extended our efforts by implementing a ranking setup
that leverages these correctness signals to select higher-quality so-
lutions from multiple generations, improving pass@1 performance
and approaching a theoretical pass@10 ceiling. We also achieve
superior or comparable performance to the state-of-the-art RankEF
ranker model across most settings. The data and code necessary to
replicate our experiments is publicly available. [5] We consider con-
tinued exploration of LLM internals promises further improvements
in trustworthy Al-assisted programming.
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