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ABSTRACT
While researchers develop many new exciting code recom-
mender systems, such as method-call completion, code-snippet
completion, or code search, an accurate evaluation of such
systems is always a challenge. We analyzed the current liter-
ature and found that most of the current evaluations rely on
artificial queries extracted from released code, which begs
the question: Do such evaluations reflect real-life usages? To
answer this question, we capture 6,189 fine-grained develop-
ment histories from real IDE interactions. We use them as
a ground truth and extract 7,157 real queries for a specific
method-call recommender system. We compare the results of
such real queries with different artificial evaluation strategies
and check several assumptions that are repeatedly used in
research, but never empirically evaluated. We find that an
evolving context that is often observed in practice has a ma-
jor effect on the prediction quality of recommender systems,
but is not commonly reflected in artificial evaluations.

CCS Concepts
•General and reference → Evaluation; •Information
systems → Recommender systems; •Software and its
engineering → Software notations and tools; •Human-
centered computing → Design and evaluation methods;
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1. INTRODUCTION
Research in the area of Recommendation Systems for Soft-

ware Engineering (RSSE) regularly produces exciting ideas
on how to automatically support developers with their daily
coding and maintenance tasks. Examples include recom-
mending the next syntactic token [19], links to related code
snippets [15], and which windows to close [14]. To provide
(quantitative) evidence that such tools are accurate and valu-
able, extensive evaluations are needed.

Conducting such evaluations is often challenging. Many
evaluations of RSSE involve humans for realistic evaluations
(e.g., [3,9,15,20]). Unfortunately, conducting such controlled
experiments is often infeasible due to the high cost in terms
of both time and resources [13]. Other issues include the
replicability of the experiment or privacy constraints when
analyzing developer behavior. In addition, controlled ex-
periments are based on selected use cases, which limits the
generalizability of the results. To overcome these challenges,
many researchers have resorted to artificial evaluation strate-
gies that generate evaluation queries from released code.
These strategies can overcome the drawbacks of controlled
experiments with real developers. They are easy to conduct
and scale well, allowing them to cover different scenarios.
However, using them raises the following critical question:
How realistic are they? In other words, do artificial evalua-
tions actually reflect real-life usages? Given that the method
for creating queries from released code greatly differs between
the evaluation strategies we surveyed, it is important to un-
derstand how different decisions may influence evaluations.
To the best of our knowledge, these questions have not been
systematically and empirically investigated.

In order to compare artificial approaches to real approaches,
it is necessary to have the appropriate ground truth. We use
an existing IDE interaction tracker to capture a dataset of
fine-grained history of source code directly in the develop-
ment environment of developers. This dataset provides the
necessary means for a realistic evaluation of source-based
RSSE. In our experiments, we feed a method-call recom-
mender, PBN [22], with queries extracted from the captured
code changes and compare this realistic evaluation strategy
with artificial approaches to answer two research questions:

RQ1: Do artificial queries have an effect on the measured
prediction quality of a recommender?

RQ2: Do real queries have properties that are not reflected
in artificial queries?

Our results show that artificial evaluations can be mislead-
ing, often suggesting a higher prediction quality than what
would be achieved in practice. We show that the differences
result from ignoring evolving context that is not captured in
artificial queries. Our results help toolsmiths make informed
decisions about the evaluation strategy best suited for their
goals and understand implications of these decisions.

In summary, this paper makes the following contributions:

● We present a survey of related work to identify common
evaluation strategies and classify them based on the design
decisions they make.
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● Using a tool that captures developers’ interactions, we
collect a set of real code changes from professional software
developers, researchers, and students.

● We use this dataset to conduct an extensive experiment to
evaluate the quality of artificial evaluation strategies and
tradeoffs in their design space.

We publish the tools used in our experiments on the artifact
page of this paper [4]. We also publish all parts of the dataset
for which we have the required permission. This dataset can
be used as a benchmark for evaluating future recommenders.

2. CURRENT EVALUATION TECHNIQUES
We survey source-based RSSE to understand how they

are currently evaluated. We consulted a RSSE survey [26],
the recent RSSE book [27], and several recent publications
in premier software engineering conferences to identify re-
lated evaluation techniques. Because we use a source-based
method-call recommender in our experiments, we focus the
survey on the evaluations of related RSSE. While the most
related evaluations would be those of other method-call rec-
ommenders, we relax the survey criteria and also consider
other source-based RSSE to get a general overview of how
evaluations are typically done. We include approaches that
consider the structural and context information found in code
(as opposed to techniques that treat code as text [8]). Based
on this survey, we summarize existing evaluation strategies
and motivate our problem statement accordingly.

2.1 Existing Evaluation Strategies
Many RSSE are being evaluated through controlled ex-

periments that involve human subjects. To quantify the
performance of the system, researchers analyze if partici-
pants successfully complete a task (e.g., [9]) or measure how
long subjects take for completion (e.g., [13]). In other more
qualitative evaluations, experts judge the usefulness of the
proposals (e.g., [9, 15]) or the subjects rate their experience
with the tool (e.g., [3, 28]). All these are valid evaluations
and they often create additional qualitative insights.

However, controlled experiments also have their downsides.
Their nature limits their scope and makes it hard to generalize
the results. Many tools also work with external services (e.g.,
Q&A websites [20]), which hinders replication, or require very
task-specific data like navigation information (e.g., [3]), which
makes it hard to design appropriate tasks. Most importantly,
designing a controlled experiment involving humans takes a
lot of time. In addition, the risk of a failed experiment is also
quite high, because a study cannot be simply replayed, when
for example a bug is discovered after the fact. As a result, it is
much more common to find artificial evaluations of RSSE in
the literature, which motivated the research questions of our
work. In the following, we will discuss several representatives
of artificial evaluations that we found in the literature. The
goal is not to present an exhaustive list of prior evaluations,
but to introduce several high-level ideas by example.

Heinemann et al. present a method-call recommender [7].
In addition to considering the structure of a program, the
approach considers identifiers, such as variable names. The
recommender tokenizes source code into an event stream and
learns a model of this stream. To evaluate the approach,
they iterate over this event stream, predict every method
invocation that they encounter, and measure the quality of
the proposals. They assume linearity and do not include
information that is found after the query point.

Zhang et al. propose a recommender that predicts parame-
ters for method calls [28]. For evaluation, they use published
source code and query the recommender at each observed
parameter. Queries contain all observed information from
the code with the exception of the parameter that is to be
predicted. They also conducted a user study that analyzes
the perceived usefulness and opinions of the participants to
get qualitative feedback for their tool. However, they do
not present quantitative data about the performance of the
recommender or the correctness of the proposals.

Bruch et al. [2] propose a method-call recommender based
on the Best Matching Neighbor (BMN) algorithm. Queries
are automatically generated from API usages observed from
code repositories. A query consists of a subset of the observed
method calls in the API usage and the evaluation measures
how well the recommender predicts the removed calls. The
authors use two strategies to generate such queries: (1) a
no calls included strategy that mimics the situation where
a developer triggers code completion when she starts to
implement a method and (2) a first half strategy that keeps
only the first half of the method calls to mimic the situation
where a developer triggers code completion after she wrote
parts of a method.

Follow-up work replaces the BMN algorithm by a Pattern-
Based Bayesian Network (PBN) [22] as the recommender
engine. The evaluation also uses both the no calls included
strategy and the first half strategy. In addition, queries
are generated with a random half strategy that randomly
selects which half of the method calls is kept to mimic that
developers may not write code in a linear fashion. The
random selection is repeated and the results are averaged.

GraPacc [18] recommends code snippets that are related to
the current context. Patterns are mined from the source code
of some Java projects to create the recommender, which is
then evaluated on several other projects. For the evaluation,
all method calls are extracted from the method bodies in
the validation projects. These sets of methods are divided
into two parts: the first part is used as a query for the
recommender, the second part as the expectation. The
evaluation measures the fraction of proposed method calls
that are contained in the second part and the proposal. This
evaluation technique is similar to the first half evaluation
followed by Bruch et al. [2].

MAPO [29] is a miner and recommender for API usage
patterns. The miner identifies API patterns in a large pool
of released source code. In the IDE, the current context
is matched against these patterns to retrieve related code
snippets. The authors use code snippets selected from a
tutorial book in the evaluation, which are considered cor-
rect and complete. In their queries, they use all context
information and the first method call. Given such a query,
the recommender suggests related code snippets, which are
manually matched with the expectation.

Prospector [13] is a recommender that is queried with a
tuple of two API types: an input type from the current
context and a target type that the developer wants to obtain
an instance of. Prospector returns a sequence of method
calls that would return an object instance with the respective
type. For the evaluation, the authors manually picked 20
example programming problems that they deem realistic and
that Prospector is applicable to. For the queries, they always
assume that the developer knows both types.
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Table 1: Classification of existing artificial evalua-
tion strategies. Columns show the identified query
scenarios while rows show the selection strategies.

0∣M N∣M M-1∣M
Linear

[2, 22]
[2, 7, 18,29] [23,28]

Random [5,13,22,23]

Guervo et al. present InSynth [5], a tool to synthesize
type-correct expressions. As such expressions can be complex
structures that contain nested sub-expressions, the approach
effectively recommends code snippets. For the evaluation,
they manually create 50 query/expectation pairs as bench-
marks, taken from several open-source projects. A query is
a program snippet in which a single expression is removed
for the benchmark. The evaluation measures whether In-
Synth can synthesize that expression again. Since the target
expression is selected arbitrarily, the evaluation approach
resembles the random removal approach used for PBN [22].
Unlike the PBN evaluation, the benchmark set is manually
created rather than automatically generated.

Raychem et al. [23] develop a recommender that suggests
multiple missing method calls in a piece of code. They
traverse the syntax tree and reduce it to a sequence of method
calls. Missing method calls are holes in this sequence. The
recommender calculates the most likely sequences of method
calls that fill the holes. Three kinds of queries are used
for evaluation: (1) a single hole at the end of the program,
(2) multiple holes that are manually introduced, and (3) one
or more random holes that are automatically introduced. The
first query strategy assumes linearity in code development;
the other two assume non-linearity. The authors do not
describe whether there is a limit on how many holes are
introduced; our understanding is that only a small percentage
of the method calls are removed for querying.

Note that the three last papers are somewhat different
from the others, since they also include queries manually
created by the tool smith. This is done to create realistic,
meaningful queries that a real developer might trigger. How-
ever, since the creation of such queries is very subjective and
not based on any input from actual developers, we consider
these evaluations as artificial.

Some approaches conduct controlled experiments and cap-
ture all interactions of the subjects for later experiments.
However, existing approaches either capture data that is
not appropriate to build or evaluate source-based RSSE
(e.g., [10, 11]) or they do not perform automated evaluations
and evaluate results manually (e.g., [16]). To the best of our
knowledge, there have been no attempts to create a bench-
mark of developer interactions for an automated evaluation
of RSSE before.

2.2 Problem Statement
Our survey of evaluation approaches suggests that artificial

evaluations are more popular than real evaluations. This is
not surprising, since real evaluations tend to be too expensive
and time-consuming to be practical [13]. They usually also
involve factors like privacy considerations and convincing
developers to use a research prototype. While artificial eval-
uation strategies do not have the issues mentioned above,
it is important to understand how close they are to real
evaluations. To investigate this, the goal of this paper is to
answer the two research questions posed in the introduction.
Specifically, we evaluate different artificial evaluation tech-

niques that employ different query generation strategies and
compare them to a realistic evaluation. Our survey identified
two factors that differentiate the artificial query generation
strategies: the query scenario and the selection strategy.

Query Scenario. Any piece of code has context information.
This includes structural context information such as the
surrounding method or class, as well as information such as
which methods have been called and in which order. The
query scenario describes how much context from the final code
is kept in the query. Most query-generation approaches focus
on the target information they want to predict. For example,
a method-call recommender focuses on the methods called in
a particular context, while a parameter recommender focuses
on the parameters of a particular method call. Given a final
code snapshot of M items of target context information, the
query-generation approaches range from removing all of this
context (0∣M) to “leave one out” (M-1∣M), with shades in
between, where the target context is partly preserved (N∣M).

0∣M In this case, all target context information is removed
from the final state of the code, resulting in a minimal
query. If the approach depends on specific information,
e.g., the type of the variable on which code completion
was triggered, this information is preserved. This strategy
mimics the situation where developers are just starting to
write code and may not know where to start. Creating such
queries is straightforward since there are no ambiguities
in what goes into a query.

N∣M In this case, parts of the existing code is preserved.
This mimics the typical development scenario, where devel-
opers implement some parts of a method, but potentially
miss details for which they need the recommender’s help.

M-1∣M In this case, only one piece of information is re-
moved. This mimics the case of developers who already
implemented most functionality but only miss one part.

Selection Strategy. The selection strategy is the second dif-
ferentiating factor, which determines how partial information
is selected from the final context. It answers the question:
Given a complete piece of code from a repository, which parts
of it should be removed for querying? Several approaches
assume a linear development of source code and remove the
later parts of a method. Other approaches perform a random
selection of the context or even repeat the random selection
multiple times to cover different parts of the existing code.

Linear Assuming code is developed in a linear fashion greatly
simplifies the evaluation and makes its implementation
straightforward. However, there is no empirical evidence
that developers actually code in this fashion and so it is
unclear how realistic this assumption is.

Random For a thorough evaluation, several random sub-
selections are made for a complete usage. The results
are averaged to get one representative prediction-quality
measure. The averaging adds an extra layer to the imple-
mentation. Heuristics may be needed to limit the number
of selected queries, since the number of sub-selections can
be quite large. Randomly selecting parts of the existing
code to remove might also hide corner cases in which a
recommender performs particularly well or badly.

Table 1 classifies the related work we presented in Section 2.1
along the two identified dimensions. Given the variability of
artificial evaluation strategies, it is important to understand
the impact of different choices, how they reflect real-life de-
veloper usage, and how they compare to a real evaluation
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Figure 1: Overview of Evaluation-Comparison Strategy

strategy. Such knowledge is valuable in two ways: First, it
helps to judge the validity of evaluation results reported in
the literature. Second, it helps researchers make informed de-
cisions about their evaluation strategies and how to interpret
their evaluation results.

3. OVERVIEW OF EVALUATION SETUP
Figure 1 outlines the overall setup we use to compare the

identified evaluation strategies. The idea is composed of two
parts. First, we establish a ground truth, from which we
generate different types of queries for the identified evaluation
strategies. Second, we provide the different queries to a
recommender and compare the quality of its proposals as a
means to compare the different strategies.

To ensure fairness and comparability, we use the same rec-
ommender system for all evaluation strategies. The choice of
the particular subject recommender system is less important,
because the effect of any weakness or strength of the recom-
mender will be equal across all evaluation strategies. We
use the Pattern-based Bayesian Network (PBN) method-call
recommender [22], because it provided us with a complete
open-source evaluation pipeline. The core data structure
used in PBN is an object usage, which contains information
about the context in which the usage of a particular API
type was observed (e.g., the enclosing method or the way the
object is initialized), as well as the set of methods that have
been invoked on that instance of the type.

To build the recommender, we create reference models for
various API types (the Learning Models step in Figure 1).
We used an open-source dataset of C# projects as input
training data to create the reference models [21]. The dataset
was created from 360 open source GitHub repositories and
contains usage data for more than 560 unique APIs, each of
which includes various types. We filter the dataset to the 407
types that appear in our ground truth and use the collected
usages to build reference models for these types.

Since establishing the ground truth and generating the
queries are the main steps in setting up our evaluation com-
parison experiments, we respectively dedicate Section 4 and
Section 5 to the details of each of these steps.

4. ESTABLISHING THE GROUND TRUTH
To ensure a realistic and fair comparison, we first establish

the ground truth about what queries developers actually
perform and what the code looks like at that point. Thus,
we are interested in capturing a development history of how
method calls are added to the code under edit over time.
This allows us to replay the development using the actual
state of the code at query time, i.e., to simulate a controlled
experiment with real queries. It also allows a comparison of
the results for different recommenders.

The commit history obtained from a project’s source con-
trol repository has been commonly used to obtain such a
development history (e.g., Hassan and Holt [6]). However,
it has also been shown that, on average, commits are cre-
ated on every third day, with a high variance between users
and the type of changes [12]. It has also been shown that
version-control commits shadow many of the intermediate
code changes [17]. This means that the version history found
in public repositories of Open Source Software is too coarse
grained for our purposes. Instead, we choose to capture
more fine-grained code changes directly from the developer’s
Integrated Development Environment (IDE), similar to the
idea previously proposed by Robbes and Lanza [24]. While
both Hassan and Holt [6] and Robbes and Lanza [25] used
some form of development history to improve recommenders,
our work is different in that we use this development history
to compare different evaluation strategies rather than use it
to improve the recommender itself.

4.1 Creating the Tooling
To get more fine-grained code changes, we want to capture

snapshots of the code under edit every time a change occurs.
Such information is best captured directly from within the de-
velopers’ IDE. Additionally, we want to capture interactions
of the developers with the IDE’s code-completion tool and
store which method was selected from the list of proposals, if
any. We combine the code snapshot and the timestamp, as
well as the optional selection of a method proposal, if avail-
able. We call the collection of this information an enriched
micro commit. We can use these micro commits to create
real queries and to replay the recorded development history,
including code completion, after the fact.

To collect such information, we extended FeedBaG, an
open source instrumentation of Visual Studio that collects in-
teractions of C# developers with their IDE [1]. We extended
the instrumentation of the code completion and added a
static analysis that extracts context information from the
code under edit. Each time code completion is triggered by
the developer (or when it pops up automatically), we create a
snapshot of the source code under edit. Snapshots are stored
in the form of simplified syntax trees [21], a lightweight format
that also includes typing information and which supports
markers for code completion trigger points.

4.2 Gathering the Data
FeedBaG’s sources are publicly available, and the tool

can be installed from within Visual Studio. Once a user has
the tool installed, their interactions and micro commits are
automatically captured. Users can then upload this captured
data to our servers at any time through a provided dialog.

We first deployed our modified version of the tracking tool
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Table 2: Contributed Events per Developer

Id Type # Days # Queries %

0* Researcher 89 4888 20.6

1 Student 66 4625 19.5

2 Student 52 3162 13.3

3 Hobby Programmer 48 2096 8.8

4 Student 28 900 3.8

5 Student 32 771 3.2

...

45 Unknown 4 10 <0.1

...

55 Professional 3 2 <0.1

total 753 23,746 100.0

with Company X (cannot be named for privacy reasons)
that develops tax and accounting-related software as well as
in-house software for 50 years. It employs more than 1,600
developers, out of which more than 400 write programs in C#.
Development projects span from small training examples to
core-business applications. In addition, we advertised the
project in several social media channels and during various
conferences to widen our user base. Even before our active
recruitment efforts, several open-source developers indepen-
dently installed our tool after seeing it in Visual Studio’s
public plug-in repository. We also had several students in-
stall FeedBaG while they were developing different systems,
including a game, web applications in ASP.NET, or their
own Masters thesis project. Finally, one of the authors of
this paper along with student assistants also had FeedBaG
installed while they working on the tools used in this paper.

Our final data set, therefore, contains queries from a variety
of users and projects, including industrial developers, open-
source developers, researchers, and students. The individual
participant contributions are listed in Table 2. Note that the
table is cropped for brevity, but the complete list is available
on the artifact page. The asterisk in the table marks the
contributions of the involved author of this paper.

In total, we received submissions of captured data from
56 users. Out of these, 27 were industrial developers that
provided 13% of our queries. The remaining users (with per-
centage contributions shown in parenthesis) were 8 students
(45.9%), 4 researchers (21.5%), and 2 hobby programmers
(9.6%). The remaining 15 users (10.0%) decided not to fill
our (optional) profile information. The submissions cover
753 days and span over a period of 13 months, but not all
users participated the whole time.

4.3 Post-processing the Data
There is still a gap between our collected ground truth

and the input data required for PBN. The collected micro
commits are file-oriented snapshots whose contents reflect a
complete type declaration in a file (e.g., a class with all its
methods and the corresponding method bodies), while the
input data for PBN are object usages. To bridge this gap,
we first sort the micro commits by time and declared type.
As a result, we get the development history of a file. After
this, we extract object usages for all types used in each micro
commit. Since a micro commit represents a whole class, we
extract object usages for several types in this step. Finally,
we merge the resulting usages from all micro commits of the
same user, group them by type and by enclosing method,
and preserve the order to create a complete usage history.

mc2

A1 A2

B1

+

A3

t0 t1 t2

File X

Usage
Histories

mc1

Figure 2: From Micro Commits to Usage Histories

Figure 2 illustrates an example. The file icons depict
micro commits, while the squares represent object usages.
The character in each square shows the type of that specific
object usage; the index is only added for easier reference.

Assume that we have created two micro commits for file X
that were captured at times t0 and t1. For the micro commit
at t1, we captured the information that a specific method
was selected from the code completion proposals (depicted
by the “+’). Assume that at time t0, the code only contained
usages of type A, while at time t1, usages of type B were also
added. Our usage extraction therefore finds a single object
usage for type A in the first micro commit and two object
usages for the types A and B in the second one.

In order to use all information that is contained in the
usage history, we developed two strategies that transform
implicit knowledge into explicit states in the usage history.
Given all extracted usages, we can identify types that are
used in a specific context, but for which we were not able
to extract usages for all micro commits. In the example, we
can derive that B was not yet used in the first micro commit,
but added to the second one. To make sure that we include
such usages that are created from-scratch (i.e., usages where
we only know the object type and surrounding context but
do not have any called methods yet) in our evaluation, we
add an empty usage to B’s history at time t0.

Another corner case that needs to be handled is if the last
micro commit in a usage history contains a selection. In
this case, we will not actually see the effect of the selection
in subsequent micro commits, because none exist. In order
to preserve the selection for our evaluation, we create an
artificial usage in which we merge the usage on which code
completion was triggered with the selection result. Referring
to the example in Figure 2, a method selection took place
for the micro commit captured at time t1. Assuming the
completion trigger would have taken place on the object
usage of type A and that t + 1 is the last micro commit in
the history, we would create an object usage A3 at time t+ 2,
which contains the selected method too.

After the extraction, our usage history may contain subse-
quent occurrences of the same object usage. This duplication
may be due to several reasons. For example, consider the situ-
ation in which a developer invokes code completion, but then
cancels it. This would result in two equal usage snapshots
in the history. Another example is that the developer uses
the types A and B in the same context. She adds multiple
method calls to the object of type B, but leaves the object
of type A untouched for a while. This would add several
unchanged usage snapshots to A’s history. We post-process
the histories and remove such duplicates.

After applying the described transformations, our final
ground truth set that is used in our experiments consists
of 6,189 usage histories. On average, each usage history
contains 4.6 snapshots, but a few outliers exist with a length
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of more than 700 usages. We manually inspected these
cases and all inspected cases were examples in which the
developer spent time in a specific context implementing an
algorithm and working with the same type over and over
again. Frequent additions and removals of the same methods
bloat up the histories for these usages, e.g., adding and
removing a log statement. However, outliers with more than
17 steps represent less than 2% of our collected data, so we
did not introduce special handling for these cases.

Our collected usage histories cover 407 types used in 5,834
different method contexts. The dataset we used to train
the recommender contains a total of 650,340 object usages
for these types. Note that PBN models do not contain
ordering information. While object usages only contain a
set of method invocations, our extraction implementation
guarantees that the order in which invocations are entered
reflects the order in the source code. While this is irrelevant
for object usages used in PBN models, it is important for
generating order-dependent queries for some of the evaluation
strategies we compare.

5. GENERATING QUERIES
In this section, we discuss how we use our collected ground-

truth data set to generate queries that can be used to compare
different evaluation strategies. As discussed in Section 2,
artificial evaluations are based on released code found in
a repository. This version is treated as the final state of
the code and considered correct and complete. Artificial
evaluations apply heuristics to approximate past states of
this version, which are then used to generate queries. The
final state serves as expectations to judge the quality of an
RSSE. The evaluation, thereby, measures the recommender’s
ability to lead the developer towards that final state.

Since artificial evaluation strategies are much cheaper than
real evaluations, we expect that toolsmiths and researchers
will continue to use them. The goal of our evaluation is to
analyze the different heuristics that are used to approximate
queries. We do this by comparing an evaluation based on
these heuristics to an evaluation based on real queries, which
we obtain from our object-usage histories. This evaluation
comparison uncovers qualities and problems of the artificial
strategies and we identify guidelines for future evaluations.

5.1 Obtaining Real Queries
The usage histories from our dataset mimic the real de-

velopment history and reflect changes to the files under edit
in a very fine-grained manner. In terms of evaluating a
recommender, a query has an input state and an expected
output state. We assume that the last snapshot of a history
represents the outcome of a development task. We, therefore,
use this final snapshot to formulate our expectation on the
evaluated recommender’s proposals, similar to how artificial
evaluations use the code from a repository. However, the
difference between an artificial query and a real query lies in
which code state is used for the query input.

We extract 23,746 queries from our usage histories by
combining pairs from each snapshot in the history with the
final state. After filtering 6,218 pure removals (i.e., queries
in which calls were removed, but no calls were added) and
10,371 queries that contained equal start and end states, we
ended up with 7,157 real queries for the evaluation.

Start
1 public void M() {

2 T t = new T();
3 t.m1();

4 t.mX();

5 t.mY();
6 }

End
1 public void M() {

2 T t = T.Create ();

3 t.m2();
4 t.m1();
5 }

Strategy Definition Site Calls in Query

Linear T.Create m2

Random T.Create m1 and m2 in multiple queries

Real* T.Create m1

Real new T() m1, mX, mY

Figure 3: Example of a 3−2+1 query case (labeled as
1∣2) and the queries created for each strategy (Yellow
is change, red is removal, and green is addition).

5.2 Generating PBN Queries
At this point, we have the set of real queries obtained

from the usage history. To compare the results of a real
evaluation to an artificial approach, it is necessary to emulate
the heuristics that build an artificial start state from the
real end state. Recall from Section 2.2 that there are two
dimensions used to automatically generate artificial queries:
query scenario (0∣M, N∣M, and M-1∣M) and selection strategy
(Linear, Random, and Real). To create the artificial queries,
we first identify the query scenario for each real query and
then apply the different selection strategies on that query to
create an artificial one.

Query Scenario. We first categorize the collected queries
by the type of performed change. We assign each query a
label that reflects the number of calls added or removed. A
label n-r+a means that the query contained n calls in the
input and that r calls were removed, while a calls were added,
to come to the final state. Consider the query in Figure 3 as
an example. The start state contains three calls (m1, mX, and
mY). For the final state, mX and mY were removed, while m2

was added. Thus, this is an example of a 3-2+1 query.
Since PBN can only suggest method-call additions, and

not removals, we needed to adapt query labels accordingly.
We do so by dropping the removals from the labels used for
categorization. For example, for the query in Figure 3, even
though the removals mX and mY are used in the real query, we
do not include them in the final categorization label. Instead,
we label the query as a 1∣2 change to indicate that the query
already contained one out of the two final calls. We assign
the queries to the three query scenarios based on this label.

Selection Strategy. Once a query is assigned to a query sce-
nario, we next generate the actual queries for each selection
strategy as follows. We use the query in Figure 3 to explain
the difference between strategies.

Linear In this case, the query is taken only from the end
state. The method calls to be included in the query are
selected top-down from the list of existing method calls in
the end state. For our example query, which was classified
as a 1∣2 query according to the above query scenario clas-
sification, we could technically generate both 0∣2 and 1∣2
queries. Yet, we only generate a 1∣2 query to have the real
query to compare it to. The linear approach would select
m2 for the query, because it is the first method call that
exists in the end-state code. However, the order of appear-
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ance of calls in source code at the end state might not be
the order in which they were added during development,
as can be seen from the example.

Random The random strategy also selects the information
to include in the query from the end state, but instead of
selecting method calls linearly, it selects them randomly.
In the end state of Figure 3, there are only two methods.
To generate the 1∣2 query using the random strategy, we
randomly pick one call and use it in the query. To make
sure all scenarios are covered, the approach repeats this
random selection until all possible method calls are covered
and the results are averaged. In our example, two possible
queries will be generated where the first includes only m1

as input and expects m2 and the second includes only m2 as
input and expects m1. An average of the prediction quality
of both results is then taken to reflect the prediction quality
of this whole query.

Real Based on the unique opportunity of having detailed
development information available in our collected usage
histories, we introduce the real selection strategy to re-
produce what would actually happen during development
or during a controlled experiment with subject develop-
ers. We only use the information that would be available
to a recommender in a real-life scenario where the query
was placed during development. This means that only
the start state is used to query the recommender. The
fine-grained history reflects the evolving context over time
and includes all information that do not show in the end
state, because they were missing, changed, or got removed
in the usage history. For example, the query does not only
include method m1, but also the removed methods mX and
mY, as well as the original definition site new T() that was
changed during development to the static call T.Create().

Real Without Noise (Real*) To understand the effect
of the evolving context in real queries, we add a fourth
strategy that we call real*. The only difference between
real and real* is that the latter would not include any
evolving context in the query. To create the query, real*
uses the context of the end state and selects all methods
from the start state that have not been removed during
development. In the example, the 1∣2 query would include
only m1, because it existed before. In addition, T.Create()
would be selected as the definition site. We consider real*
to be an artificial approach, because the selection of the
methods for the query and the inclusion of the correct
definition site can only happen after the fact.

The input of each generated query is used to request proposals
from the recommender, which is built from the reference
models. We measure the prediction quality by comparing
the set of proposals with the expected outcome, which is the
set of methods that are missing in the query input, but that
exist in the end state. The similarity is calculated through
the F1 measure (i.e., the combination of recall and precision).
A detailed overview of the number of queries we captured in
each query scenario is shown in Table 3.

6. DO ARTIFICIAL QUERIES WORK?
In this section, we empirically compare the different selec-

tion strategies described in the previous section. We follow
the evaluation comparison strategy that has been outlined in
Figure 1 and explained in Section 3 in order to answer the
two research questions posed in the introduction.

Table 3: Available queries for N∣M scenarios

N∣M 1 2 3 4 5 6+ Σ

0 4327 703 592 82 13 30 5747 (80.3%)

1 - 741 109 60 3 6 919 (12.8%)

2 - - 252 52 15 11 330 (4.6%)

3 - - - 95 19 6 120 (1.7%)

4 - - - - 19 5 24 (0.3%)

5+ - - - - - 17 17 (0.2%)

Σ 4327 1444 953 289 69 75 7157

6.1 Do Artificial Queries Affect the Measured
Prediction Quality of a Recommender?

To compare the evaluation strategies, we feed our refer-
ence recommender with the generated queries. The quality
is measured by comparing the proposals to the expected ad-
ditions available in the end state of the query case. Table 4
shows the quality obtained for each selection strategy and
corresponding query scenario. We explain these results by
going through each query scenario (columns) and comparing
the selection strategies (rows). We present the results of each
query strategy and provide an interpretation of the findings.

0∣M. Queries in this category contain no method calls as
part of their input. This means that none of the method
calls in the expected state appear in the input state. This is
the most common case and 80.3% of our data falls into this
category. We factored out NEW as a special subset of 0∣M
that reflects the case in which the developer did not write
any code so far. In this case, no information is available in
the code context, apart from the enclosing method and the
type of the usage. Another special category is 0∣1 queries,
which can be assigned to both 0∣M and M-1∣M. We decided
to assign it to the 0∣M category but show it as a separate
column in the table for better examination of the results.

The results in Table 4 show that for such queries, no
difference exists between the artificial strategies. This is not
surprising, because all artificial strategies end up with the
same query created from the same end state. One observation
is that it seems that the more missing calls exist, the harder
it is for the recommender to find them. Another observation
is a notable difference in the results of real queries. While the
difference is already noticeable for NEW queries, it gets worse
for 0∣1 and the recommender seems to be unable to process
0∣2+ queries (4.9%). The only difference here between real
and the artificial strategies is missing or changing context
information. While the definition site might change for all
0∣M queries, 0∣1 and 0∣2+ might additionally contain calls
that are about to be removed.

N∣M. Such queries contain some existing calls and reflect
the use case in which the developer has already started to
write some code and then asks for help. This is the case
for 14.5% of the queries in our dataset. We factored out 1∣2
queries for the same reasons as the 0∣1 queries.

We find that the F1-values for this query scenario differ
greatly for 1∣2 queries. The random approach reports the
highest quality for the recommender (29.9%). The other
approaches result in a much lower quality, 15.0% for linear
and 19.1% for real*. The real evaluation, which includes
evolving context in the query, yields the lowest quality with
12.1%). The results for N∣3+ differ slightly between the
different selection strategies and are around 43-45%. The
only approach that sticks out is random, which reports a
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Table 4: Different query scenarios [F1/%]

0∣M N∣M
NEW 0∣1 0∣2+ 1∣2 N∣3+ M-1∣M

LINEAR 60.2 38.2 34.0 15.0 45.4 34.8

RANDOM 60.2 38.2 34.0 29.9 50.0 30.9

REAL* 60.2 38.2 34.0 19.1 45.1 24.0

REAL 53.0 15.1 4.9 12.0 43.3 23.7

# Queries 3612 1445 690 741 294 375

(50.5%) (20.2%) (9.6%) (10.4%) (4.1%) (5.2%)

much higher quality of 50%. Overall, the random results are
consistently higher in the N∣M query scenario than the other
selection strategies. The real evaluation again reports worse
quality than the remaining artificial strategies.

M-1∣M. This is the extreme case of N∣M: only the last call
in the method is missing, while the remaining methods are
given as part of the input. Only 5.2% of the queries in our
dataset fall into this category. The results show that the
quality of the real and the real* strategy are comparable.
However, the reported quality of random is much higher
(30.9%) and even exceeded by the linear strategy (34.8%).

The selection of methods in the query is the only difference
between the three artificial approaches, yet we see different
results. The linear selection strategy reports the highest
quality (34.8%), while real* is close to the real result and
reports 24.0%. The random approach mixes the different
extremal values and reports a quality in between (30.9%). It
seems that some missing methods are harder to predict than
others and that developers select these methods last.

Interpretation of Results. For the 0∣M queries, no differ-
ence can be seen between the artificial approaches. On the
other hand, the real queries perform worse, because the def-
inition site is unknown. The more calls that need to be
predicted, the more problematic this seems to be. In addi-
tion, a direct comparison between real* and real shows that
evolving context in real queries reduces the reported quality.
This is true for all query scenarios. We look at this more
closely in Section 6.2 where we examine the effect of evolving
context information.

When compared to the random selection strategy, the
linear strategy seems to be better in some cases (e.g., M-1∣M),
while worse in others (e.g., N∣M). The randomized generation
of multiple queries and averaging of the results seems to
cause a smoothing effect that creates more robust results.
We averaged the results over all queries (not shown in the
table) to see if this is a general effect. However, we found
that all artificial selection strategies achieve results that are
comparable to each other (linear 46.6%, random 48.2%, and
real* 46.6%).

Although all artificial strategies create queries from the
same set of methods found in the end state of a micro commit,
they select the methods to include differently. This seems to
have a real effect on prediction quality as can be seen for both
N∣M and M-1∣M query scenarios. Such a difference suggests
that some methods are harder to predict than others. A
possible explanation is that these calls might be used very
rarely and the recommender favors common method calls.

To explain this intuition, let us go back to the example in
Figure 3 and assume that m2 is not a very typical method,
which makes it harder to predict. In the linear case, the

Table 5: Effects of Evolving Context [F1/%]

NEW 0 −M ∆D −M+∆D

REAL* 60.2 21.4 29.0 38.8 40.9

REAL 53.0 21.4 25.9 24.1 1.9

# Queries 3612 794 1173 249 1329

(50.5%) (11.1%) (16.4%) (3.5%) (18.6%)

recommender is lucky, because it gets m2 as input and has
to predict m1. In the random case, two queries are provided
to the recommender. It does really well in the easy query
(i.e., when the input is m2) and really bad in the other one
(i.e., when the input is m1). Since the results of both queries
are averaged, the extreme effect is smoothed out a little.
However, for the real* strategy, the recommender gets m1

and has to predict the hard method m2. It, thus, follows that
it would have a lower prediction quality.

As opposed to artificial strategies, queries in the real strat-
egy only include the methods that were actually included by
the developer first. Since the prediction quality of the real
query is even lower, this also suggests that developers add
such hard-to-predict methods later to their code rather than
earlier. Thus, it seems that for such corner cases, artificial
approaches tend to give a higher prediction quality than it
would actually be the case in a real setting.

6.2 Do Real Queries Have Properties Not Re-
flected in Artificial Queries?

Released code is a static picture of the development ac-
tivities. Any intermediate changes or removals cannot be
identified by artificial evaluations, because they are part of
the development process and do not show up in the released
code. Our data set provides a unique opportunity to explore
the impact of intermediate code changes and code removals
on recommender evaluations. To explore this, we compare
the real and real* strategies in more detail. The input to
real queries might miss context information or might contain
context information that is changed in the end state. For
PBN, this includes both method calls that have been re-
moved during development and changes to the context of an
object usage. The context is defined by the enclosing method
and the definition site of an object. By construction, the
enclosing method is fixed for all query generation strategies,
because object usages are always bound to a specific method.
If the enclosing method is changed, this would count as a
different object usage. On the other hand, the definition
site, which describes how an object instance was created,
may change during development (e.g., see the definition site
in Figure 3). If there are no removals or changes in the
definition site, the query will not contain any artifacts of
an evolving context, i.e., changed or removed information.
Artificial selection strategies are unaware of such changes,
and are thus not sidetracked by them. This results in a
higher prediction quality than for a real query. We examine
the effect of evolving context in more detail in Table 5. In
addition to queries in an unchanged context, the context
may evolve in four different ways that are applicable here.
Moving method calls to other enclosing methods is a fifth
kind. However, distinguishing these moves from removals is
outside the scope of our work and not considered here.

Newly Created Usage (NEW) The most represented cat-
egory in our dataset is usages that are added from scratch.
The values are equal to Table 4 and only included for easier
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comparison. The difference between real and real* here
can be explained by a changed definition site.

Unchanged Context (0) We categorize queries into this
category that do no include any changes in the surrounding
context. By design, no difference exists for real and real*
queries in this category.

Retired Method Calls (−M) This category refers to the
case in which the query has calls in the input that are
removed during development and no longer contained in
the end state. For example, this can happen when the
developer chooses a more appropriate method call to use.
We find that this is the case for 16.4% of the queries in
our dataset. Our results suggest that these extra methods
that appear in the input seem to confuse the recommender.
The quality decreases from 29% for real* to 25.9% for real.

Changed Definition (∆D) A small part of our dataset
(3.5%) includes queries in which the definition site changes
between the input and end state. This particular context
change has a big impact on real evaluations. Table 5 shows
a quality drop from 38.8% for real* to 24.1% for real.

Combination (−M +∆D) The second largest category in
our dataset are queries that combine both a change in
definition site as well as the removal of method calls. It
prevents any meaningful proposal in our experiment for
the real approach and the quality drops to 1.9%.

We find that real evaluations are sensitive to context changes.
While retired method calls have a minor impact on the result
of a real evaluation, the change or absence of the definition
site leads to a large difference in the result. Such an impact
is not covered in the artificial evaluation strategies.

While the specific context information we discussed in
this section (removed calls and changed definition sites) may
be specific to PBN, other recommender systems that use
context information will suffer from the same problem when
this information evolves (e.g., changing the implemented
interfaces [9], removing method calls on related objects [28],
re-ordering call sequences [23], etc.). The general problem
is that context information can change during development.
Artificial evaluations usually do not mimic context evolution,
which results in “unrealistic” quality reports.

7. DISCUSSION
Our results indicate that the focus of an evaluation is an

important factor when determining which query scenario and
selection strategy to use. In the following, we discuss broader
implication of our results and implications for future work.

7.1 Implications of Results
Choice of Query Scenario. Depending on the type of users
the recommender is meant to support, researchers can de-
cide on which query scenario they use in their evaluation.
While 0∣M represents green-field projects or novices that re-
quest help from the recommender before actually starting to
write code, N∣M reflects advanced programmers that write
something before triggering code completion, or maintenance
tasks, in which the programmer typically starts to edit ex-
isting methods. The M-1∣M query scenario can be used to
demonstrate support for corner cases or that even experts
that just miss “the last bit” can get valuable support.

Choice of Selection Strategy. Our ground truth reflects
developers’ typical code completion usage. In our dataset,
0∣M queries are the common case for which no difference exists

for the different selection strategies. On the other hand, we
find great differences between the selection strategies for the
uncommon cases that include the N∣M and M-1∣M query
scenarios. We observed for these query scenarios that some
methods seem to be harder to predict than others. Depending
on the methods that are contained in the query, the reported
quality may vary. The random selection strategy leads to
a smoothing effect that can overcome this effect to some
extent, but it leads to a reported quality that is generally
higher than for the other artificial approaches.

Overall, by comparing the average results over all queries,
we could measure only minor differences between the different
artificial selection strategies. We could not find a single
artificial evaluation that is more realistic than the others.
When compared to the result of real queries, we found that
all artificial evaluations report a higher quality.

Considering the Effect of an Evolving Context. Missing
or changing context information affected many query cases.
We found that in real queries, the evolving context has a
negative effect on the recommendation quality. The more
changed context features the recommender engine takes into
consideration, the bigger this negative effect is, because
more “confusing” information is passed to the recommender.
Researchers should be aware of this effect in their evaluations.

While this does not necessarily invalidate the results of arti-
ficial evaluations, it results in more positive results than what
would actually be measured from real developers. Existing
artificial evaluations remove only the target information (i.e.,
the method calls). However, to make an artificial evaluation
more realistic, toolsmiths have to check their assumptions
about the context information used in the query. They have
to identify what context information may change in reality
and they should mimic that in their automatically generated
queries. For example, they should remove additional context
information (e.g., definition sites in our case) from the input
of a specific fraction of the queries or set it to a random, but
valid, value (e.g., set an an arbitrary definition site stored in
the model for a fraction of the queries).

7.2 Implications for Future Work
Further Comparisons. We designed our experiments to
use a single recommender to compare artificial and real eval-
uation techniques. Future experiments should compare arti-
ficial and real evaluation techniques (using the same dataset)
across multiple recommenders. This allows investigating
which recommenders are more resilient to evolving context,
for example.

Improving Recommenders. We found that 26.2% of the
snapshots in our dataset were pure removals of method calls.
While it could be the case that these are artifacts of mainte-
nance tasks, we hypothesize that this could also be caused by
going through a learning process on how to use a given API
to solve a task at hand. These removals are not considered in
any RSSE so far, probably because they cannot be observed
by statically analyzing code repositories. Future work should
investigate these removals. It seems that they contain infor-
mation that could be leveraged to further improve existing
approaches or to create a new kind of RSSE that points the
developer to methods that should be removed.

Evaluation Style. Our dataset consists of a series of source
code snapshots as illustrated in Figure 4. The evaluation
design we used in this paper follows what we refer to as a goal
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Figure 4: Identifying Expected Query Results

oriented style, in which the validation queries are created
from the intermediate states and the proposals are validated
on the end state. This follows the intuition that this final
state is the desired outcome of a development task and that
the recommender should lead the developer towards this
outcome. It might be that a recommender that suggests such
an end state increases productivity, because it points the
developer to methods she must use in the end. However, it
might also be that the proposal hinders the learning process,
because it might be unexpected at that exact point in time.

We observed in our dataset that the path towards the
final state is rarely straight. Therefore, a viable alternative
could be to use a step-wise evaluation style instead, in which
each subsequent change would be evaluated individually. For
example, each snapshot could be used as a query and the
subsequent snapshot formulates the respective expectations.
Such an approach follows the intuition that an RSSE is ex-
pected to propose what the developer thought was right at
the time of query. Such a tool might support the learning
process, which could be beneficial, especially for novice de-
velopers. However, experienced developers that know the
API in question might be disturbed by incorrect proposals.

It is not clear which of these should recommenders be
designed to do and accordingly, which of the evaluation
strategies is better or more realistic. To investigate this, we
conducted a preliminary experiment that used each usage
snapshot as a query and compared the proposals to both
the next snapshot and to the final snapshots. We calculated
the F1 measure for both scenarios and, over all queries, the
stepwise approach resulted in an average of 38.4% and the
goal oriented style in an average of 41.4%. A Mann Whitney
U test shows that the difference between these two evalua-
tion approaches is statistically significant (p-value=0.001).
Therefore, future work should investigate assumptions on the
expectations used to evaluate recommender systems. In other
words, we need to analyze whether RSSEs should propose
the correct answer or the expected answer.

8. THREATS TO VALIDITY
This section discusses the potential threats to the validity

of our work, as well as our mitigation strategies.

Construct validity. The prediction quality range reported
by PBN for this dataset is lower than prediction qualities
usually obtained in the literature, including our previous
experience with PBN on Java SWT [22]. We plan to investi-
gate this more qualitatively to find out if this is a factor of
language differences (C# vs. Java) or a factor of the API
types included in the ground truth data set. However, our
goal is not to promote a particular recommender, but rather
to compare different evaluation strategies. Thus, we do not
believe that this impacts the validity of our results since
any difference between evaluation strategies would still be
observed. Additionally, to avoid confounding factors that
may affect our comparison, we ensure that we have enough
object usages to build reference models for each API type
we are interested in. This ensures that all API types have
a fair chance of getting good predictions. That said, even

if the model for one API type does not have enough data,
the effect will be the same across all evaluation strategies,
keeping our comparisons fair.

Internal validity. To decrease the possibility of implementa-
tion bugs as much possible, we used an existing recommender
system with its existing evaluation pipeline. We implemented
only those parts necessary for the new experiments and thor-
oughly tested them. Our code is publicly available on our
artifact page. Our results also depend on the quality of the
static analysis of the C# code we use to extract the micro
commits. C# is a real-world programming language, and the
analyzed programs contain very complex expressions. While
we excessively tested the analysis in an extensive test suite,
it is possible that we may have missed corner cases.

External validity. Our results are based on the comparison
of the different evaluation strategies for only one recommen-
dation system for single-object patterns (PBN). Our results
might not generalize to other recommenders that have a dif-
ferent notion of context, that deal with multi-object patterns,
or that propose complete code snippets. Since we use the
same recommender across all evaluation strategies, our re-
sults are valid and ensure non-biased comparisons. Since this
is a limitation of the recommender rather than our ground
truth data set, the same comparison can be repeated with
additional recommenders. However, this might entail some
engineering effort to adapt each recommender to use the
ground truth data set.

We cover various kinds of developers by collecting data
from diverse groups. We have data from professional de-
velopers, open-source developers, researchers, and students.
However, we do not currently have information about the
project types these developers worked on. In the future, we
will capture more information about the type of the project
(e.g., green field or maintenance) and the role of the developer
(e.g., developer, tester, or integrator) to get a better picture
about the task the developer was working on.

9. CONCLUSION
In this paper, we surveyed related work to identify the cur-

rent state of the art of evaluation strategies. We found that
many existing approaches are based on artificial evaluations.
Our goal was to analyze whether these evaluations reflect
real-life usages. We presented a concept for the comparison
of different evaluation strategies and collected a ground truth
data set that allowed us to conduct the comparison. We
analyzed how the results of a real evaluation relate to the
artificial results. We showed that artificial approaches report
a misleading quality for the evaluation if they do not consider
evolving context information and, therefore, provide more
information in the query than what would be available in
a real scenario. We believe that artificial evaluations can
still work if context evolution is carefully emulated in the
evaluation.
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