Scalable Software Merging Studies with
MERGANSER

Moein Owhadi-Kareshk
University of Alberta
Edmonton, AB, Canada
owhadika@ualberta.ca

Abstract—Software merging researchers constantly need em-
pirical data of real-world merge scenarios to analyze. Such data
is currently extracted through individual and isolated efforts,
often with non-systematically designed scripts that may not
easily scale to large studies. This hinders replication and proper
comparison of results. In this paper, we introduce MERGANSER,
a scalable and easy-to-use tool for extracting and analyzing
merge scenarios in Git repositories. In addition to extracting
basic information about merge scenarios from Git history, our
tool also replays each merge to detect conflicts and stores the
corresponding information of conflicting files and regions. We
design a normalized and extensible SQL data schema to store
the information of the analyzed repositories, merge scenarios
and involved commits, and merge replays and conflicts. By
running only one command, our proposed tool clones the target
repositories, detects their merge scenarios, and stores their
information in a SQL database. MERGANSER is written in
Python and released under the MIT license. In this tool paper,
we describe MERGANSER’s architecture and provide guidance
for its usage in practice.

Index Terms—Collaborative Software Development, MER-
GANSER, Scalable Tool, Software Merging.

I. INTRODUCTION

Today’s software industry relies on collaborative develop-
ment. Tools such as Git and GitHub help developers to store
the development history, share software artifacts, and collab-
orate with each other [3]-[5]. Using these tools, developers
can work on the same codebase simultaneously. Branching is
an important feature of Git which allows developers to have
independent versions of the code, other than the main branch
(usually master). This way, at least one code branch remains
stable and developers add new features and fix bugs on the
other ones. Once a branch is ready, developers merge it into the
master branch. This type of merging is called direct merging.
Another type of merging can happen through pull requests
(PRs) on GitHub, or other social coding platforms, where
developers explicitly indicate that they want to merge their
changes from a given fork or branch into a target repository.

We use the term merge scenario to describe both of the
above cases. We focus only on merge scenarios that integrate
two branches. Such merge scenarios are represented by a
merge commit that has two merge parents in the Git history.
Additionally, there is a common ancestor that marks the point
at which the history diverged. When the same line of code
is changed simultaneously by the two branches, Git cannot

Sarah Nadi
University of Alberta
Edmonton, AB, Canada
nadi @ualberta.ca

decide which change to use and reports a merge conflict.
Developers typically resolve these conflicts manually, which
is an error-prone and time-consuming task [1], [2].

Researchers study merge scenarios in order to design better
development tools or to introduce better practices to reduce
the number of conflicts. Empirical studies on software merging
can also shed light on the characteristics of current software
development practices and ways of improving them. There
is a lot of previous work that analyzes the performance and
functionality of different merging techniques [6], [7], predicts
merge conflicts [8], [9], detects conflicts early [10]-[12],
analyzes the merging status of PRs [13], [14], or studies the
code review process associated with PRs [15]-[17].

To conduct any of the above work, researchers need a
reliable and scalable tool to extract relevant information from
merge scenarios. To the best of our knowledge, there is no
existing scalable and extensible tool for extracting relevant
information from merge scenarios to facilitate the study of
collaborative software development. The above previous stud-
ies usually developed their own tools for extracting merge
scenarios, along with their different characteristics, from ver-
sion control history. Such individual efforts are typically
customized for the goal of the study and thus are not easily
reusable or may not scale well for large studies. Additionally,
since such a mining tool is a means to an end, rather than
the main contribution of the work, the tool may not be well-
tested or designed for others to use it. Moreover, each study
may have its own predefined assumptions about the criteria for
choosing repositories to study and may differ in the technical
details and assumptions used to extract the data. All of the
above means that every researcher that starts working on the
software merging problem needs to re-invent the wheel every
time, and worse, the results of the work in the literature may
not be easily comparable and reproducible.

To address the above challenges, we propose MERGANSER,
a scalable tool that extracts merge scenarios and merge
conflicts data from Git repositories, and stores this data in
a normalized SQL database. Given a list of repositories,
MERGANSER (1) clones the repositories, (2) extracts repos-
itory meta-data such as the number of stars and forks, (3)
detects merge scenarios, (4) extracts the information about the
merge scenarios such as the number of developers involved
or development duration, (5) replays the merge scenarios to

detect conflicting files and regions, and (6) stores all the above
information in a SQL database. MERGANSER can analyze
multiple repositories in parallel, using as many CPU cores as
the user specifies. We designed the data schema to be easily
extensible, such that extracting any new features in the future
is easy. MERGANSER is fully documented and open-sourced
under an MIT license!.

II. RELATED TOOLS

Over the last couple of decades, several tools were proposed
for mining software repositories, especially for Git and GitHub
repositories. However, to the best of our knowledge, there is no
off-the-shelf tool that focuses on software merging. Boa [18]
is a tool, with an accompanying language, for running large-
scale queries on data from GitHub and SourceForge. However,
it queries snapshots of these websites, rather than real-time
data. GHTorrent [19] is an offline mirror of GitHub that allows
users to either download the data as a SQL or MongoDB
database, or run their queries online. PyDriller [20] is a recent
tool for analyzing Git history to extract data such as commits,
developers, source code, etc. GitMiner [21] is an open-source
tool that stores data extracted from Git and GitHub in a
database. Although both PyDriller and GitMiner can be used
to detect merge commits by selecting commits with more than
one parent, neither provide any additional option to analyze
merge scenarios or merge conflicts. GrimoireLab [22] is an
industrial-level tool that is capable of gathering data from
version control systems, issue trackers, mailing lists, wikis, but
it does not contain any tooling for analyzing merge scenarios.
Some papers that study software merging (e.g., [7]) release
the tool used for mining the merge data. However, the tool
is specific to the study and cannot be directly employed for
general software merging research due to lack of scalability
and covering only a limited number of merge-scenario features
extracted for the specific study.

III. MERGANSER OVERVIEW

The goal of MERGANSER is to extract all relevant informa-
tion about merge scenarios found in a repository’s Git history,
such that it can later be used for various studies on software
merging and collaborative software development. Given a set
of GitHub repositories, MERGANSER extracts all the relevant
information of the merge scenarios from their histories and
stores it according to the data schema shown in Figure 1.
We selected the list of the features to extract from a merge
scenario (i.e., those stored in the schema in Figure 1) based
on analyzing the kind of information previous studies on
software merging typically need [9], [10], [13], [23]. Note
that MERGANSER users have the option of extracting only a
subset of tables or fields to avoid unnecessary computation by
focusing only on the fields they are interested in.

The first step of the mining process with MERGANSER is
to determine the list of repositories to be analyzed. Our tool
supports two ways of doing this. First, if the user already

Thttps://github.com/ualberta-smr/merganser

has a list of repositories in mind, she can simply feed that
list to MERGANSER. However, sometimes researchers want
to analyze repositories that match specific characteristics, e.g.,
repositories with more than 100 stars, and do not have an
explicit list of repositories in mind. Our tool can (1) receive a
list of criteria, (2) search GitHub for repositories that satisfy
these criteria using GitHub’s search API, and (3) store the list
of repositories.

Second, given a list of repositories, MERGANSER extracts
the relevant information to store in the database. In Table I,
we summarize the description of each table in our schema
and the tool(s) we use to extract the corresponding fields in
the table. The exact details of the tools and commands we use
are available in MERGANSER’s online documentation.

In general, given the list of repositories, MERGANSER
extracts the information of each repository such as their
popularity metrics (i.e. the number of stars, forks, watches)
and their description using the GitHub API. Then, to gather
the necessary data about merge scenarios, MERGANSER first
clones the repositories locally and then detects merge scenarios
using Git commands. We consider any commit with two
parents as a merge scenario’. MERGANSER then replays
each merge commit to detect the conflicting files and regions.
Finally, it stores all the extracted information in a SQL
database, according to the schema in Figure 1. We provide all
information the user needs to run MERGANSER in its online
documentation.

One of the advantages of MERGANSER is that it is easily
configurable. A user can choose the exact information they
wish to extract, using the various flags that control the tool.
Table II describes all the currently supported flags. For exam-
ple, if the user is interested in checking whether the resolution
Git created compiles successfully, they would specify the —c
flag. If studying such syntactic conflicts [24] is not a goal of
the researcher’s study, then MERGANSER will simply skip
this step and save the execution time and resources needed to
compile the merge resolution.

Note that, as shown in Table I, some of the extracted
features are language-independent while others are currently
limited to certain programming languages. For example, for
checking the compilation status of the resolution, we currently
support only Java repositories that use Maven. There are no
conceptual limitations for adding other build systems for Java
or other programming languages; it simply requires additional
engineering effort that we plan to add in the future.

IV. PRACTICAL USAGE OF MERGANSER

We already used MERGANSER to collect data from
267,657 merge scenarios from 744 open-source GitHub repos-
itories in seven programming languages. For these merge

2While merge commits can have more than two parents, the ones with
two parents represent the more typical scenario and the focus of software
merging studies, which is why we focus on them in MERGANSER. However,
supporting n-way, or octopus, merges can easily be supported in the future.
Our detection strategy also means we miss rebased merge scenarios since
rebasing creates a linear history. However, there is currently no accurate
technique for detecting merge scenarios that have been rebased.

"] Merge_Related_Commit v
commit_hash CHAR(40)
date DATETIME
message VARCHAR(400)
branch VARCHAR(45)
merge_commit_parent INT
file_added_num INT
file_removed_num INT
file_renamed_num INT
file_copied_num INT
file_modified_num INT
line_added_num INT
line_removed_num INT

! MS_merge_commit_hash CHAR(40)

! MS_Repository_id BIGINT

] Contflicting_Region
parenti_path VARCHAR(400)
parent2_path VARCHAR(400)
parent1_start_line INT
parenti_length INT
parent2_start_line INT
parent2_length INT

! MR_merge_technique VARCHAR(15)

! MR_MS_merge_commit_hash CHAR(40)

! MR_MS_Repository_id BIGINT

"] Merge_Scenario v
merge_commit_hash CHAR(40)

ancestor_commit_hash CHAR(40)

parent1_commit_hash CHAR(40)

_] Contflicting_File \/ parent2_commit_hash CHAR(40)

file_path_name VARCHAR(400) parallel_changed_file_num INT

conflict_type VARCHAR(40) merge_commit_can_compile INT

" MR_merge_technique VARCHAR(15) merge_commit_can_pass_test INT

! MR_MS__merge_commit_hash CHAR(40) ancestor_can_compile INT

! MR_MS_Repository_id BIGINT ancestor_can_pass_test INT

id BIGINT

"] Repository v

update_date DATETIME
name VARCHAR(100)

description VARCHAR(400)

> language VARCHAR(20)

parent1_can_compile INT

i parent1_can_pass_test INT >—

arent2_can_compile INT
"] Merge_Replay v P -can_comp
parent2_can_pass_test INT
merge_technique VARCHAR(15)

merge_commit_date DATETIME
has_conflict INT

ancestor_date DATETIME
can_compile INT

parent1_date DATETIME
can_pass_test INT

parent2_date DATETIME
execution_time FLOAT

parent1_developer_num INT
result_is_equal_to_replay INT

parent2_developer_num INT
! MS_merge_commit_hash CHAR(40)

pull_request INT
! MS_Repository_id BIGINT

! Repository_id BIGINT

Fig. 1. The MERGANSER Data Schema

TABLE I
THE LIST OF TABLES IN THE DATA SCHEMA OF MERGANSER

star_num INT

fork_num INT

size BIGINT

is_done INT

watch_num INT

issue_num INT

merge_scenario_num INT

No.

Table Name

Description

Extraction Method

Repository

Data of analyzed repositories including the analysis date, name, description, programming
language, popularity measures such as the number of stars, size, the total number of merge
scenarios in this repository, and whether the analysis is done yet.

GitHub API
Git commands

Merge_Scenario

Data of merge scenarios including the SHA-1 and the date the ancestor, parents, and
the merge commit, whether these commits can compile and pass the tests, the number
of simultaneously changed files in two parents, the number of active developers in each
parent, and whether the merge is a pull-request or a normal merge by using the commit
message. To check whether the code can compile or pass the tests, we use Maven and
therefore, these two specific fields can be extracted for only Java repositories at the
moment.

Git commands
Maven

Merge_Related_Commit

Data of all commits that are involved in the merge scenario, including the SHA-1, date,
commit message, branch name, the parent (the first one or the second one), and the number
of edited files and lines.

Git commands

Merge_Replay

MERGANSER replays merge scenarios to detect conflicts and stores their characteristics.
This table stores whether the merge scenario has any conflict, whether the involved
commits (merge commit, the ancestor, and the parents) compile and pass the test suite, the
execution time of replaying, and whether the replayed version for automated resolutions
is equal to the committed resolution.

Git commands
Maven

Conflicting_File

Data of all files that have conflicts, including their relative path and the type of conflict
reported by Git (e.g., content conflict vs. delete/modify).

Git commands

Conflicting Region

Data of conflicting regions, including the paths of the two parent files and the location of
the conflict region, represented as the start line and length of the region.

Git commands

scenarios, we populated the tables shown in Figure I, which GANSER. In this section, we provide example SQL queries
would have not been possible without the scalability of MER- to demonstrate how a user can make use of the data collected

TABLE II
THE LIST OF PARAMETERS FOR USING MERGANSER

No. | Parameter | Description Affected Tables

1 -r The list name of GitHub repositories, located in . /working_dir/repository_list All Tables

2 -c If set, the repository will be compiled after a successful merge to check if the merge introduced a | Merge_Replay
compilation problem

3 -t If set, the repository test suite will be run after a successful merge to check if the merge introduced | Merge_Replay
a semantic problem

4 —-cf If set, the information of each conflicting file is stored Conflicting_File

5 -cr If set, the information of each conflicting region is stored Conflicting_Region

6 -rc If set, the replays and merge commits are compared to check if the developer changed the Git’'s | Merge_Replay
resolution before the merge commit

7 —-cd If set, the information of all involved commits in merge scenarios is stored Merge_Related_Commit

8 —cores The number of threads that MERGANSER uses (the default is using all available CPU cores) None

9 -sd Specify the time window of merge scenarios to analyze All

after running MERGANSER.

a) Simultaneously Changed Files: To extract the number
of files that are edited in two branches in parallel, the user can
run the following query:

SELECT merge_commit_hash, parallel_changed_file_num
FROM Merge_Data. Merge_Scenario

b) The number of commits: The following query extracts
the number of involved commits in merge scenarios in Java:

SELECT merge_scenario.merge_commit_hash , COUNT(
commits . commit_hash)

FROM Merge_Data. Repository as repository

JOIN Merge_Data.Merge_Scenario as merge_scenario
ON repository.id = merge_scenario.Repository_id

JOIN Merge_Data.Merge_Related_Commit as commits
ON merge_scenario.merge_commit_hash = commits.
MS_merge_commit_hash

WHERE repository.language = ’java’

GROUP BY merge_scenario.merge_commit_hash

c) The number of added/removed lines: To extract the
difference between the number of lines that are added and
deleted in two branches:

SELECT merge_scenario.merge_commit_hash ,
SUM(commits . line_added_num x IF (commits .
merge_commit_parent=2,1,—1)) AS ’line_added’,
SUM(commits . line_removed_num x* IF(commits.
merge_commit_parent=2,1,—1)) AS ’line_removed’
FROM Merge_Data.Merge_Scenario as merge_scenario
JOIN Merge_Data.Merge_Related_Commit as commits
ON merge_scenario.merge_commit_hash = commits.
MS_merge_commit_hash
GROUP BY merge_scenario.merge_commit_hash

V. CONCLUSION

In this paper, we introduced MERGANSER, an easy-to-use
tool for large-scale software merging studies. Our proposed
tool receives a list of repositories as input and stores the
information of their merge scenarios into a normalized and
extensible SQL database using only a one line command. The
tool is written in Python, released under the MIT license,
and can analyze Git repositories in a distributed manner.

MERGANSER is configurable to cater to different user needs,
such as providing them the ability to collect data only for
specific database tables to avoid unnecessary computations.
To demonstrate how data collected by MERGANSER can be
used, we showed three sample SQL queries to extract relevant
data about merge scenarios.

REFERENCES

[1] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu, “The promises and perils of mining git,” in 2009 6th IEEE
International Working Conference on Mining Software Repositories,
pp. 1-10, IEEE, 2009.

[2] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th working conference on mining software repositories, pp. 92—
101, ACM, 2014.

[3] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “An in-depth study of the promises and perils of mining
github,” Empirical Software Engineering, vol. 21, no. 5, pp. 2035-2071,
2016.

[4] A. Sarma, D. F. Redmiles, and A. Van Der Hoek, “Palantir: Early
detection of development conflicts arising from parallel code changes,”
IEEE Transactions on Software Engineering, vol. 38, no. 4, pp. 889-908,
2012.

[5] C. Bird and T. Zimmermann, “Assessing the value of branches with
what-if analysis,” in Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering, p. 45,
ACM, 2012.

[6] G. Cavalcanti, P. Borba, and P. Accioly, “Evaluating and improving
semistructured merge,” Proceedings of the ACM on Programming Lan-
guages, vol. 1, no. OOPSLA, p. 59, 2017.

[7]1 P. Accioly, P. Borba, and G. Cavalcanti, “Understanding semi-structured
merge conflict characteristics in open-source java projects,” Empirical
Software Engineering, vol. 23, no. 4, pp. 2051-2085, 2018.

[8] P. Accioly, P. Borba, L. Silva, and G. Cavalcanti, “Analyzing conflict
predictors in open-source java projects,” in Proceedings of the 15th
International Conference on Mining Software Repositories, pp. 576-586,
ACM, 2018.

[9] O. LeBenich, J. Siegmund, S. Apel, C. Kistner, and C. Hunsen, “In-
dicators for merge conflicts in the wild: survey and empirical study,”
Automated Software Engineering, vol. 25, no. 2, pp. 279-313, 2018.

[10] Y. Fan, X. Xia, D. Lo, and S. Li, “Early prediction of merged code
changes to prioritize reviewing tasks,” Empirical Software Engineering,
pp. 1-48, 2018.

[11] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Early detection
of collaboration conflicts and risks,” IEEE Transactions on Software
Engineering, vol. 39, no. 10, pp. 1358-1375, 2013.

[12] M. L. Guimaries and A. R. Silva, “Improving early detection of software
merge conflicts,” in Proceedings of the 34th International Conference
on Software Engineering, pp. 342-352, IEEE Press, 2012.

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]
(23]

[24]

O. Kononenko, T. Rose, O. Baysal, M. Godfrey, D. Theisen, and
B. de Water, “Studying pull request merges: a case study of shopify’s
active merchant,” in Proceedings of the 40th International Conference on
Software Engineering: Software Engineering in Practice, pp. 124—-133,
ACM, 2018.

Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer recommendation for
pull-requests in github: What can we learn from code review and bug
assignment?,” Information and Software Technology, vol. 74, pp. 204—
218, 2016.

H. Uwano, M. Nakamura, A. Monden, and K.-i. Matsumoto, “Analyzing
individual performance of source code review using reviewers’ eye
movement,” in Proceedings of the 2006 symposium on Eye tracking
research & applications, pp. 133-140, ACM, 2006.

A. D. Da Cunha and D. Greathead, “Does personality matter?: an
analysis of code-review ability,” Communications of the ACM, vol. 50,
no. 5, pp. 109-112, 2007.

A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 2013 international
conference on software engineering, pp. 712721, IEEE Press, 2013.
R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in Proceedings of the 2013 International Conference on Software
Engineering, pp. 422431, IEEE Press, 2013.

G. Gousios, “The ghtorent dataset and tool suite,” in Proceedings of the
10th working conference on mining software repositories, pp. 233-236,
IEEE Press, 2013.

D. Spadini, M. Aniche, and A. Bacchelli, “Pydriller: Python framework
for mining software repositories,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 908-911,
ACM, 2018.

https://github.com/Prickett/gitminer.
https://chaoss.github.io/grimoirelab.

H. C. Estler, M. Nordio, C. A. Furia, and B. Meyer, “Awareness and
merge conflicts in distributed software development,” in Global Software
Engineering (ICGSE), 2014 IEEE 9th International Conference on,
pp. 26-35, 1IEEE, 2014.

Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection of
collaboration conflicts,” in Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software
engineering, pp. 168-178, ACM, 2011.

