
Variability Modeling of Cryptographic Components
(Clafer Experience Report)

Sarah Nadi
Software Technology Group

Technische Universität Darmstadt, Germany
nadi@cs.tu-darmstadt.de

Stefan Krüger
Secure Software Engineering Group

Technische Universität Darmstadt, Germany
stefan.krueger@cased.de

...

ABSTRACT
Software systems need to use cryptography to protect any
sensitive data they collect. However, there are various classes
of cryptographic components (e.g., ciphers, digests, etc.),
each suitable for a specific purpose. Additionally, each class
of such components comes with various algorithms and con-
figurations. Finding the right combination of algorithms and
correct settings to use is often difficult. We believe that us-
ing variability modeling to model these algorithms, their re-
lationships, and restrictions can help non-experts navigate
this complex domain. In this paper, we report on our experi-
ence modeling cryptographic components in Clafer, a mod-
eling language that combines feature modeling and meta-
modeling. We discuss design decisions we took as well as
the challenges we ran into. Our work helps expand variabil-
ity modeling into new domains and sheds lights on modeling
requirements that appear in practice.

CCS Concepts
•Security and privacy → Cryptography; •Software
and its engineering → Domain specific languages;
Software product lines;

Keywords
Variability Modeling, Cryptography, Clafer

1. INTRODUCTION
Variability modeling is a way to understand the common-

alities and differences of products in a particular domain.
Besides being a useful form of documentation and commu-
nication about a system and its offered products, it provides
a basis for automated reasoning and configuration of these
products. Variability modeling has been successfully ap-
plied in many domains such as the automotive domain [1],
databases [2], and systems software [3]. However, different
domains and applications pose different challenges to vari-
ability modeling, both conceptually and in terms of language

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

VaMoS ’16, January 27 - 29, 2016, Salvador, Brazil
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4019-9/16/01. . . $15.00

DOI: http://dx.doi.org/10.1145/2866614.2866629

support. Reporting these challenges and learning from them
is important for future applications of variability modeling
and for improving modeling languages. In this paper, we
apply variability modeling to a new domain, that of cryp-
tography, using the Clafer modeling language [4].

There are a large number of cryptography algorithms avail-
able with different configurations, uses, and trade-offs. Ap-
plication programmers, who are not necessarily security ex-
perts, struggle with choosing the correct algorithm and set-
tings. Previous research has already shown that application
developers often misuse cryptographic APIs, leading to secu-
rity vulnerabilities [5,6]. In our previous work, we outlined a
task-based solution that helps application developers easily
and securely use cryptography in their applications [7]. Our
long-term goal is to provide a tool that allows users to select
the high-level tasks they want to perform (e.g., encrypt file
or protect password) and then generate the corresponding
correct and secure code for them. In this process, devel-
opers can also configure certain requirements that may be
specific to the task (e.g., the type of data they will process or
memory requirements). Only algorithm combinations that
match these requirements will be used in the generated code.
Thus, at the heart of such a system lies a variability model
that allows us to reason about different configurations. In
our previous work, we identified several requirements for a
modeling language (hierarchal structure, non-boolean val-
ues, references, commonality & variability, and automated
reasoning) [7] and accordingly started exploring Clafer.

In this paper, we focus only on the variability modeling as-
pect of this solution and dive deeper into the details involved
and our experience in using Clafer. We discuss different de-
sign decisions and modeling alternatives we considered dur-
ing the process as well as some limitations of Clafer we ran
into. Additionally, we briefly discuss alternatives to Clafer
that may address the cryptography modeling requirements
we found. In summary, our contributions are as follows:

• Variability modeling of a new domain (cryptography).

• A realistic application of an existing variability mod-
eling language, Clafer.

• A report on design decisions and challenges faced dur-
ing variability modeling of cryptography.

• Potential solutions and workarounds to the identified
issues, where applicable.

• Discussion of alternative languages for our domain.

We believe our experience is useful for researchers and
practitioners who (1) want to use Clafer or (2) want to apply
variability modeling in similar domains.

http://dx.doi.org/10.1145/2866614.2866629

2. BACKGROUND

2.1 Cryptography
Cryptography provides a means to protect sensitive data [8].

In the process, it relies on several classes of algorithms or
functions such as symmetric encryption ciphers, asymmet-
ric encryption ciphers, key derivation functions, digests (i.e.,
hash functions), signatures, etc. Such algorithms are usually
combined to achieve a certain task. For example, to perform
the task of encrypting data based on a given password, one
must first use a key derivation function to derive a secret key
that is then used by a symmetric cipher to encrypt the data.
Internally, the key derivation function relies on a digest.

Various algorithms are suitable for the above task. For ex-
ample, there are several encryption algorithms such as AES or
DES. Within AES, three key sizes are supported (128, 192, or
256 bits), whereas DES only supports 56 bit keys. While AES

is considered secure, there have been some cryptanalytic at-
tacks against DES so it is no longer recommended. In general,
for non-broken algorithms, the larger the key, the harder it
is to crack the encryption. The choice depends on the level
of security needed, but there are often trade-offs to consider.
For example, more secure algorithms may have slower per-
formance [9]. In addition to these considerations, some al-
gorithms have proven attacks (e.g., the MD5 digest [10]), but
are still supported for compatibility or because they may
still be used in some scenarios. All such domain knowledge
and variability must be encoded in a model that allows us
to reason about algorithms suited for a particular task.

2.2 Clafer
Clafer (class, feature, reference) is a lightweight modeling

language [4]. It combines concepts from feature modeling,
meta-modeling, and class modeling. Clafer supports many
modeling tasks such as feature modeling, configuration, do-
main modeling, and example-driven modeling. Clafer unifies
several modeling concepts such as features, instances, and
attributes into a single concept called clafer. Note the dif-
ference in capitalization: Clafer refers to the language while
clafer refers to the modeling concept used. While clafers can
represent any concept, they can be either abstract or con-
crete. Abstract clafers are marked by an abstract keyword
which tells the instance generator not to try to resolve vari-
ability or generate instances for that clafer. In addition to
concepts from traditional and attribute-based feature mod-
eling [11], Clafer also supports inheritance and references.
The following example defines an abstract concept Person,
which has a sub-concept Age of type integer.

abstract Person
age -> integer

abstract Teen : Person
[age >= 13 && age <= 19]

Bob : Person
[age = 40]

Alice : Teen
[age = 15]

person -> Person

Note that both Person and Age are clafers. Teen extends
Person by adding the constraint that age must lie between
13 and 19 years. Bob and Alice are two instances of Person

and Teen respectively. In other words, they extend these
clafers but provide concrete values for all properties. The
last clafer person is a reference to Person.

Clafer supports two backend reasoners for instance gener-
ation. The first is based on Alloy [12] and the second is based
on the Choco constraint solver [13]. If we run the instance
generator on the above example, we would get two instances
where person can either be Bob or Alice. Clafer also comes

with an extensive tool suite that includes the compiler and
a multi-objective optimizer [14].

3. MODELING CRYPTOGRAPHIC COMPO-
NENTS USING CLAFER

In this section, we report on our experience modeling cryp-
tographic components in Clafer. Figure 1 shows a model
with three tasks that we refer to throughout this section.
Lines 1-6 and Lines 8-13 define (desugared) enumeration
types for the security and performance levels of an algo-
rithm, respectively (more details in Section 3.3). Line 15
defines an abstract clafer Algorithm that has a name and
a description (both of type string) as well as security and
performance levels defined as references to the previous enu-
merations. Line 21 defines an abstract clafer Digest that
extends Algorithm. Digest adds a new clafer outputSize to
indicate the size of the produced hash. Similarly, Line 24 de-
fines a KeyDerivationAlgorithm that also extends Algorithm

and adds some extra properties to it. Notice that the child
clafer digest is optional as indicated by the question mark.
This is because some key derivation functions, such as pbkdf2
on Line 82, can work with several underlying digests1 while
others, such as as scrypt on Line 89, already use a fixed di-
gest internally (and thus no digest needs to be specified) [15].
However, algorithms that specify a digest to use should only
use accepted secure digests [16] that are not broken as indi-
cated by Line 28. We also choose to limit the output size on
Line 29 to the popular output sizes used instead of defining
an allowed range and leaving the instance generator to find
suitable values. On Line 30, we fix the number of iterations
to 1000 as this is the accepted default.

The remaining parts of the model similarly define Cipher

and Task. Starting from Line 44, we define concrete instances
of the abstract clafers we previously defined. Some of the
concrete clafers such as AES still have unresolved variability,
while others such as DES assign concrete values to all their
child clafers. Note that this model is of course not compre-
hensive of the cryptography domain.

We now discuss various design decisions of the model and
the challenges we ran into. All our discussions are based
on using Clafer v0.4.1. For the backend, we mainly use
the Choco-solver back-end due to its faster performance [1].
However, we also discuss possible optimizations in this sec-
tion that would allow us to use Alloy more effectively.

3.1 Multiple Product Types
A feature model typically represents a family of products.

A valid instance of the model is one possible product. For ex-
ample, a car feature model contains all the possible features
of a car (transmission, power windows, etc.) and a model
instance would be one model of the car. In the end, there is
only one type of product being represented, a car. For our
purposes, this product is a task. However, the problem is
that there is no way to have a common representation for all
tasks. For example, let us look at the SymmetricEncryption

and SecurePassword tasks on Lines 97 and 101 respectively.
While they are both cryptographic tasks, they have no com-
mon algorithms. While it can be argued that a task consists
of one or more Algorithm clafer, designing tasks to only de-
pend on Algorithm is too generic and meaningless. This is

1
Note that technically, key derivation functions use an HMAC with

an underlying digest, but we skip the HMAC here for simplicity.

1 //enum Security
2 abstract Security -> integer
3 Broken: Security = 1
4 Weak: Security = 2
5 Medium: Security = 3
6 Strong: Security = 4
7
8 //enum Performance
9 abstract Performance -> integer

10 VerySlow: Performance = 1
11 Slow: Performance = 2
12 Fast: Performance = 3
13 VeryFast: Performance = 4
14
15 abstract Algorithm
16 name -> string
17 description -> string
18 security -> Security
19 performance -> Performance
20
21 abstract Digest : Algorithm
22 outputSize -> integer
23
24 abstract KeyDerivationAlgorithm :

Algorithm
25 iterations -> integer
26 outputSize -> integer
27 digest -> Digest?
28 [digest.security.ref != Broken]
29 [outputSize = 128 || outputSize =

192 || outputSize = 256]//fix
popular output sizes

30 [iterations = 1000]//accepted
default # of iterations

31
32 abstract Cipher : Algorithm
33
34 abstract SymmetricCipher : Cipher
35 keySize -> integer
36
37 abstract SymmetricBlockCipher :

SymmetricCipher

40 abstract Task
41 description -> string
42
43 //group similar algorithms together
44 Ciphers
45 AES : SymmetricBlockCipher
46 [description = "Advanced

Encryption Standard (AES)
cipher"]

47 [name = "AES"]
48 [keySize = 128 || keySize = 192

|| keySize = 256]
49 [keySize = 128 => performance =

VeryFast && security =
Medium]

50 [keySize > 128 => performance =
Fast && security = Strong]

51
52 DES : SymmetricBlockCipher
53 [description = "DES encryption"]
54 [name = "DES"]
55 [security = Broken]
56 [performance = VeryFast]
57 [keySize = 56]
58
59 DigestAlgorithms
60 md5: Digest
61 [description = "MD5 digest"]
62 [name = "MD5 digest"]
63 [performance = VeryFast]
64 [security = Broken]
65 [outputSize = 128]
66
67 sha_1: Digest
68 [name = "SHA-1"]
69 [description = "SHA-1 digest"]
70 [performance = VeryFast]
71 [security = Weak]
72 [outputSize = 160]
73
74 sha_256: Digest
75 [description = "SHA-256"]
76 [name = "SHA-256 digest"]

77 [outputSize = 256]
78 [security = Strong]
79 [performance = Slow]
80
81 KeyDerivationAlgorithms
82 pbkdf2 : KeyDerivationAlgorithm
83 [name = "PBKDF2"]
84 [description = "Password-Based

Key Derivation Function 2"]
85 [performance = Slow]
86 [digest]
87 [security.ref =

digest.security.ref]
88
89 scrypt : KeyDerivationAlgorithm
90 [name = "scrypt"]
91 [description = "Scrypt

password-based key
derivation"]

92 [no digest] //Already uses
HMAC_SHA256 internally

93 [performance = VerySlow]
94 [security = Strong]
95
96 Tasks
97 SymmetricEncryption : Task
98 [description = "Encrypt data

using a secret key"]
99 cipher -> SymmetricBlockCipher

100
101 SecurePassword : Task
102 [description = "Represent

password in a secure way
for storage"]

103 kda -> KeyDerivationAlgorithm
104
105 PasswordBasedEncryption : Task
106 [description = "Encrypt data

using a given password"]
107 kda -> KeyDerivationAlgorithm
108 cipher -> SymmetricBlockCipher
109 [cipher.keySize = kda.outputSize]

Figure 1: Clafer model of cryptography algorithms and tasks

because either any combination of algorithms will be consid-
ered as (meaningless) valid instances or we have to create a
large amount of constraints to ensure only meaningful algo-
rithm combinations that represent realistic tasks. This even
gets more complicated when in addition to the list of algo-
rithms belonging to a task, there exist additional constraints
that govern the combination of these algorithms (e.g., the
constraint on Line 109 in the PasswordBasedEncryptionTask).

Based on the observations above, we believe that while
we use many concepts from feature modeling, our produced
model is conceptually not exactly a feature model in the tra-
ditional sense. This is of course in addition to the fact that
we make use of class modeling concepts provided by Clafer
such as inheritance and referencing, which drives it further
from traditional feature modeling. However, in essence, we
see this as a variation of variability and domain modeling.

3.2 Extent of Partial Variability Use
On a high-level design, we have two choices to model the

available cryptographic algorithms. The first is to define
what combinations of features is allowed and then let the in-
stance generator generate all possible instances. Let us take
the example of an encryption cipher. In its simplest form,
a symmetric encryption cipher has a name representing the
algorithm used and a (positive) key length, as follows:

abstract SymmetricBlockCipher
name -> string
keySize -> integer

[keySize > 0]

While this correctly represents all ciphers, if we try to
generate instances, we would get all key sizes from 1 until the
maximum integer value allowed by the solver. Additionally,
no meaningful value will be assigned to name. To make this
more meaningful, we can look at all available algorithms
and check the key sizes they support. For some algorithms
such as AES, a pre-determined set of key sizes (128, 192,
and 256 bits) are supported while in other algorithms such
as the asymmetric cipher RSA, key sizes may take on any
integer value between 512 and 65,536 bits. If we assume that
all symmetric ciphers are of the first type, we can add the
following constraint to SymmetricBlockCipher.

[keySize = 64 || keySize = 128 || keySize = 192 || ...]

Adding this constraint greatly restricts the number of gen-
erated instances. However, it does not solve finding the al-
gorithm name and does not solve the fact that different al-
gorithms may have different supported key sizes. While we
can solve this by adding a constraint that specifies a set of
allowed names and then add specific constraints that match
each algorithm name to its allowed key sizes, this adds too
much details to the abstract definition and quickly makes
the model hard to follow.

The second way, which we opted for, is creating a clafer
for each available algorithm. We initially created a clafer
for each variation of the algorithm. For example, we had
separate AES-128 and AES-256 clafers that assigned concrete

values to all related properties. However, to avoid redun-
dancy, we decided to only create partial instances by not
specifying certain properties and leaving the instance gen-
erator to decide based on a set of constraints. For example,
on Line 45 in Figure 1, we define AES and specify that the
key size can be 128, 192, or 256. Based on the key size, we
add constraints that set the other properties such as per-
formance and security. In this case, the instance generator
would generate three separate instances of AES.

3.3 Ordinal Attributes
In cryptography, there are several ordinal algorithm at-

tributes such as security or performance levels. While both
properties can be represented as integers that encode dis-
crete values (e.g., 1 to 4 where 4 is the highest), integer
values on their own are less comprehensible to the user. It
is therefore better to use more meaningful names for these
values, such as Slow, Strong, etc. Each algorithm would then
have exactly one security or performance level. While sim-
ply having named constants with integer values would work,
this may likely lead to silent type issues. For example, if the
ranges for security and performance levels are different, but
both are defined as integer constants, one might mistakenly
assign one of the performance levels to a security attribute.

Coming from a feature modeling background, we initially
used an xor-group to model security and performance levels.
Exclusive-or (xor) groups are a convenient way of modeling
mutually exclusive choices. Besides the fact that xor-groups
do not support ordering, we also discovered that they are not
suited for certain constraints that we need, which is why we
use enumeration in our model in Figure 1. To illustrate this,
let us use an xor-group instead of an enumeration as follows
(KDA stands for key derivation algorithm).

abstract Algorithm
xor Security
Broken
Weak
Medium
Strong

abstract Digest: Algorithm
...

abstract KDA: Algorithm
...

pbkdf2: KDA
...
[Security =

digest.Security]

The problem lies in the constraint that specifies that the
security level of pbkdf2 is the same as that of the used digest.
Using an xor-group and the above syntax always results in
the instance generator finding no instances. It took us some
time to figure out that this happens because each concrete
Digest and KDA clafer creates its own instance of Security

and thus no two Security instances would ever be the same,
making the constraint always false. Since Clafer combines
concepts from class modeling and feature modeling, this be-
havior is actually by design to represent UML containment,
which implies non-sharing of instances. However, it is a bit
misleading since the compiler does not issue any errors when
specifying such a constraint on the xor-group. For now, we
thus use enumerated values as they allow us to compare se-
curity or performance values since there is only one instance
per enumeration literal in the model.

While Clafer actually supports explicit enumerations (e.g.,
enum Security = Broken | Weak | ..), this would not allow us to
specify order-related constraints such finding algorithms that
have a security level higher than weak [Security > Weak], for
example. Fortunately, an enum is actually syntactic sugar for
an abstract clafer and concrete clafers inheriting from it [17],
which is what we use to specify ordered enumerated values

on Lines 1-13. Having all levels inherit from a single clafer
also solves the type issue mentioned above.

3.4 Ignoring Irrelevant Parts of the Model
In our task-oriented approach, the model contains a set of

tasks. At any given time, the user is only configuring one
task. However, Clafer tries to evaluate and create instances
of the complete model. This creates lots of redundancies,
because instances of clafers that are irrelevant to the current
task are still instantiated. For example, assume the model
shown in Figure 1 only has one task, SymmetricEncryption on
Line 97. In this case, if there are no additional constraints
specified, we would expect to get four possible instances (i.e.,
solutions) of this task: three instances of AES with each of
the allowed key sizes and one instance of DES. However, we
actually get 108 instances instead.

The reason for these “extra” instances is that Clafer tries
to remove all variability in the model by assigning concrete
values to all non-abstract clafers. Thus, it would still try
to resolve the variability of pbkdf2 and scrypt on Lines 82
and 89 (18 possible combinations). Additionally, whenever
the cipher in the SymmetricEncryption task is assigned to DES,
it would still try to resolve all the variability in AES. Thus, it
would find 1 ∗ 3 ∗ 18 valid instances where the cipher is DES

plus 3 ∗ 18 where the cipher is AES resulting in a total of 108
instances, out of which only four are actually relevant and
unique with respect to the target task. This behavior results
in unnecessary computation time wasted on finding solutions
for irrelevant clafers. The number of instances generated
also becomes huge as the model becomes larger, making it
difficult for a human to compare and reason about them.

Suggested Solutions. We see two possible solutions. The
first is supporting a module system where we can define parts
of the model in different files and then each task would also
be defined in a separate file. In each task file, only rele-
vant modules would be included. Based on a poll shown
on the Clafer website, a module system is actually the most
demanded feature. While a module system would greatly
improve the situation, it will still not completely solve the
problem in some cases. For example, if the target task needs
a key derivation function, the module containing all key
derivation functions will be included and in that case, both
pbkdf2 and scrypt will still contain variability, resulting in
the same issues above.

The second is to introduce a new keyword that marks
the particular clafer of interest (e.g., evaluate). The Clafer
instance generator can then perform some sort of model slic-
ing that only identifies clafers that contribute to the marked
clafer in some way. It would then only evaluate these se-
lected clafers. This can even be done by changing irrelevant
clafers to abstract ones. Ideally, specifying the target clafer
can be set in a constraint (e.g., [evaluate SymmetricEncryp-

tion]) such that we can easily append the constraint to the
existing model depending on the user’s selection.

Current (Pragmatic) Solution. To overcome this challenge,
we currently post-process the generated instances and filter
redundant ones. For example, if the user is configuring the
symmetric encryption task, we only look for the instances of
that clafer. We then look for the assigned algorithms in the
different instances and keep only the unique ones.

3.5 Default Values

Our main use of the model is to find suitable algorithms
for a specific task, possibly given specific user requirements
specified through a configurator. Many configurators use
a reconfiguration approach where all features have default
values that the user can change during the configuration
process (e.g., the Linux kernel’s Kconfig configurator [3]).
This approach is suitable for the security domain since we
want to provide the user with (the average) secure defaults
that should change only if she has specific requirements.
However, default values that can later be changed are not
currently supported by the reasoning tools used by Clafer.

At first, we attempted to define default values as con-
straints. For example, to specify that the default key size
of symmetric ciphers is 128, we would add [keySize = 128]

after Line 35 in Figure 1. This would allow us to display
the default value in the configurator. Thus, if the user just
clicked next, she would still have secure values. It also means
that we would only need to specify key size values for ciphers
that have a key size other than 128, making the task of cre-
ating the model easier. When we defined default values this
way in the abstract clafer SymmetricCipher and then assigned
a different value in its concrete clafers (e.g., Line 57 for the
concrete DES clafer), the solvers saw this as a contradiction
since they interpreted it as keySize should be both 128 and
56. Thus, instead of overriding the default value, it added
the constraint to the list of existing constraints.

After our initial attempts, we have been informed by the
Clafer language designers that in principal, Clafer supports
default values by using a second type of assignments. While
regular assignments like keySize -> integer = 128 only use
an equal sign, assignments of default values like keySize ->

integer := 128 contain an additional colon. However, none
of the current backends support this notation, which is why
we cannot use default value assignments at the moment.

Suggested Solutions. The best solution is to have at least
one of the solvers support default values. We also believe
that the current way of defining default values may be un-
intuitive and more prone to typing errors. Thus, we suggest
introducing a default keyword to explicitly state the default
value of a clafer, avoiding any confusion or hasty typos.

A sub-optimal solution is to selectively handle constraints
in a concrete clafer, before calling the solvers. If a constraint
in the child clafer exists in the parent abstract clafer, then
ignore or replace the constraint in the abstract clafer. The
problem here is that this rule will not be valid all the time.
For example, a constraint in the abstract clafer could be that
[keySize >= 64] while a constraint in the concrete clafer is
[keySize = 56]. In this case, the concrete clafer constraint
should not replace the abstract clafer and the correct be-
havior is that the model should not generate instances since
there is a conflict (i.e., this concrete clafer actually violates a
constraint). A heuristic could be to only replace constraints
if they both involve only equality.

Current Handling. We do not currently include default
values in the model itself due to the above issues. Instead,
to be able to display the appropriate default values to the
user in the configurator, we use an external properties file
that includes different default values for different properties.
These values are only used in the configurator and do not
alter the model itself.

3.6 Back-ends and Optimization
Since we use large integer values for properties such as

key size or number of iterations, we mainly used the Choco
solver backend due to its faster performance [1]. However,
using Alloy may be desirable since some of the new language
features in Clafer 0.4.1 are currently only supported by the
Alloy backend. For example, short-hands such as including
allowed key sizes directly in the clafer definition keySize ->

128, 192, 256 instead of defining the clafer and then adding
the allowed values as a constraint. One way to overcome
the slow performance caused by the large integer values is
to introduce units and use smaller values. For example,
instead of defining key sizes as bits, we can use bytes in the
model and display bits to the user. Similarly, instead of
specifying 1000 for iteration size, we can specify 1 and have
the application logic multiply it by 1000.

3.7 Configuration
We created an Eclipse plugin that provides a configura-

tor for the model. We used the Java APIs provided by the
Choco solver project to access the JavaScript compiled ver-
sion of the model programmatically [18].

3.7.1 Identifying Allowed Ranges
One challenge when creating the configurator input con-

trols is to determine the allowed input ranges and only dis-
play those to the user. Such allowed values or ranges can
be specified in the Clafer model. For example, [iterations =

1000 || iterations = 1500 || iterations = 2000] or [output-
Size >= 128]. The problem is that again these ranges look
the same as any other constraint in the model. Therefore,
there is no easy way to distinguish between constraints that
do not affect display (or sanity checks) in the configurator
and those that do. We can of course apply heuristics, but
this means that we have to check every constraint to see if
the heuristic holds or not. We currently only determine the
type of input control in the configurator based on the clafer
type (integer, string, enumeration, etc.).

3.7.2 Querying
The main purpose of the model is for application devel-

opers to find valid solutions to the cryptography tasks they
want to perform. Our idea is to pose high-level questions
to the application developer as applicable to each task. For
example, if the developer wants to perform password-based
encryption, one question may be “Is high performance im-
portant to you?” If the developer answers yes, then we need
to restrict the performance of the cipher used to Fast or Very

Fast. In other words, we need to append the following con-
straint [cipher.performance > Fast] to the PasswordBasedEn-

cryption task in the model.
We currently use the provided Java APIs to create a new

model with the appended constraints and then call the solver.
While this works so far, it requires us to recompile the
model and trigger the instance generator again, which can
be costly. We avoid multiple invocations of the instance gen-
erator by appending all constraints at once and then calling
the instance generator. However, this can of course mean
that no valid instance can be found. Currently, we only no-
tify the user when this happens but have still not used the
UnSAT Core provided by each of the backends to indicate
possible solutions to the user. Since the end user is not aware
of the underlying model, the challenge would be to present

the information provided by the UnSAT core in a way that
is understandable to the user.

4. OTHER MODELING LANGUAGES
While this paper focuses on presenting our experience

with modeling cryptography in Clafer, the issues we faced
led us to also look at related modeling paradigms and lan-
guages. We look at three directions: ontology languages,
software taxonomies, and other textual variability languages.

4.1 Ontology Languages
There has traditionally been a clear distinction between

ontologies and models [19]. On the one hand, ontologies are
a means to capture domain knowledge in a single machine-
readable representation. They reflect a shared and purpose-
independent understanding of a domain. On the other hand,
models are seen as any other form of representation of a cer-
tain system or domain that is not an ontology. For example,
class models in UML, variability models in Clafer, or tradi-
tional feature models all qualify as models. A model is a
representation from a specific viewpoint and only for a lim-
ited purpose and is, thus, not shared, but only used by a
small user group. Another important difference is the open-
vs. closed-world assumption. Ontologies view everything
not specified as unknown (open-world), while models define
it as forbidden (closed-world) [19], which results in different
approaches to reasoning. However, in recent years, common-
alities between models and ontologies have increasingly been
emphasized [20, 21], sometimes even as far as claiming that
ontologies are a subset of models. Based on this reduced
gap between ontologies and modeling, we look at whether
ontology languages are suitable for our application scenario.
Although there are several languages available [22], we fo-
cus on the Web Ontology Lanugage (OWL) as it is the most
popular and best supported language.

OWL is a family of ontology languages for the seman-
tic web. Hierarchical structures can be modeled in OWL
by means of classes, individuals, superclass-subclass rela-
tionships, and properties. Similar to Clafer, OWL does
not support default values (if a class once defines a prop-
erty value, no subclass can override it). However, contrary
to Clafer, one individual in OWL can belong to multiple
classes. As OWL is an ontology language, it focuses on
machine-readability and follows the open-world assumption.
This makes its syntax so verbose that even small OWL mod-
els become difficult to read for humans. OWL has been
widely adopted and, thus, a great range of tool support ex-
ists. However, contrary to Clafer, tools focus on classifica-
tion and not instantiation [23].

Since ontologies represent a shared understanding of a
particular domain, we also look at whether ontologies for
cryptography already exist. If so, they can either replace our
Clafer model or we can at least reuse some of the encoded
knowledge. Gyrard et al. [24] design IT-Security-related
ontologies, including one defining cryptographic primitives.
However, for our purposes, their ontologies suffer from sev-
eral drawbacks. First, they do not include all information
we need in our model. For example, supported key lengths
for symmetric block ciphers or performance properties are
missing. Second, none of the ontologies define high-level im-
plementation tasks such as password-based encryption, but
remain on the protocol level (e.g., OpenPGP or WPA2).
This means that we would still have to extend these on-

tologies. However, since some of these available ontologies
define a variety of cryptographic algorithms, we could also
make use of this already encoded knowledge and comple-
ment missing information in our model, where necessary.

4.2 Software Taxonomies
Cryptography is a algorithm-heavy domain, so it is no sur-

prise that the Clafer model we present in Figure 1 consists
mostly of algorithms. Cleophas et al. [25] propose software
taxonomies to model domains from an algorithmic perspec-
tive. In their paper, they define a taxonomy as models that
represent a conceptual hierarchy of all domain-relevant al-
gorithms. Along this hierarchy, algorithms are refined and
become more concrete. For cryptographic algorithms, Ci-

pher would be higher than SymmetricCipher, which are then
followed by the actual algorithms such as AES or DES. Such
taxonomies are thus similar to our representation of crypto-
graphic algorithms in Clafer. However, we also define high-
level tasks in the model, which are directly used for product
generation and which taxonomies are not capable of cap-
turing [26]. If we used a software taxonomy to model the
cryptography domain, we would need to find a second mod-
eling language to define the tasks.

4.3 Other Variability Modeling Languages
We now discuss related variability modeling languages

that may be suited to the cryptography domain. Since
Clafer is a textual variability modelling language whose ca-
pabilities exceed those of traditional feature models, we fo-
cus our discussion on such modeling languages. Based on
a recent survey [27], we identify three relevant languages
(apart from Clafer): TVL [28], IVML [29], and VSL [30].

TVL. The Textual Variability Language (TVL) [28] was in-
troduced as a textual notation that covers all aspects of
feature modeling, but provides extra functionality (e.g., at-
tributes) that is necessary to model realistic cases. Our ex-
perience with modeling cryptography stresses such needs.

In contrast to Clafer, TVL supports modularization through
a simple module system that relies on preprocessing. In
other words, contents of other files can be included into a
module by using include statements. This simple support
already allows us to better structure our model and sep-
arate different algorithm types in different files. However,
based on their survey, the authors conclude that users want
a more sophisticated modular system that includes explic-
itly exporting features or attributes in a module. Moreover,
similar to Clafer, TVL does not support default values or
ignoring parts of the model.

IVML. The INDENICA Variability Modeling Language (IVML)
is designed to support the variability modeling requirements
relevant to supporting the customization of complex service
platform ecosystems [27,29]. IVML provides interesting lan-
guage features relevant to our application. For example,
IVML supports ordered enumerations. IVML also supports
default values and allows them to be overridden later on in
the model. We note that IVML differentiates default val-
ues from regular assignments in constraints by using = for
default values and == for assignments.

IVML has a module system that allows dividing a model
into several sub-models in different files. IVML also allows
more control over how the model is evaluated through the

eval keyword. The keyword tells the instance generator to
evaluate this constraint first. This leads to the assignment
of related variable values which in return reduces the search
scope when evaluating the whole model. This is a differ-
ent behavior from what we suggest in Section 3.4, but it
may be the case that it can be adapted to ignore certain
parts of the model and only evaluate a specific task and
its related features, without continuing to fully evaluate the
model. Additionally, IVML supports feature model version-
ing to support evolution. This might be relevant as security
specifications evolve over time.

VSL. The textual Variability Specification Language [30]
provides advanced variability modeling support including
cardinality-based feature modeling [11]. Similar to IVML,
VSL also supports default values. VSL provides modu-
larization mechanisms through keywords such as feature-

model, config, configLink, and entity that represent a fea-
ture model, a configuration of a feature model (partial or
complete), a relationship between two feature models, and a
combination of any of the above, respectively. Additionally,
entities themselves can be composed of other entities. This
allows for a better separation of concerns and provides some
form of modularity while designing the model. It also sepa-
rates instances from the general (or abstract) definitions in
the model. Similar to Clafer, VSL’s syntax is relatively sim-
ple once the user grasps all special keywords for modularity
and more complex constraints (links).

4.4 Discussion
It has long been suggested to integrate ontologies into soft-

ware engineering, either as a replacement of domain models
or at least as the basis for more purpose-focused domain
modeling. However, it seems that due to the different focus
of modeling and ontology engineering, there are still obsta-
cles for wider adoption. We, therefore, believe that varia-
tions of variability modeling are better suited for our needs.

Our investigation of software taxonomies leads us to a sim-
ilar result. While we do see some similarities between them
and our way of modeling cryptographic algorithms in Clafer,
their focus on algorithms is too limited for our purposes as
we also want to specify non-algorithmic elements.

In terms of variability modeling, more detailed investiga-
tion of the above modeling languages is needed. Based on
our brief comparison, IVML seems promising for our needs
since it solves most of the challenges we faced. However, we
(subjectively) see that Clafer’s syntax is simpler to under-
stand. It additionally has an extensive tool suite and APIs
which makes it very easy to use. Some of the language fea-
tures we need may also get implemented in future versions
of Clafer. However, for an objective comparison, we have to
create an IVML model to practically investigate whether we
can successfully model all aspects of cryptography.

5. RELATED WORK
We mainly used Clafer as a variability and domain mod-

eling language. It has been used before for similar purposes
such as encoding the Linux Kernel’s variability model [3],
Oracle’s Merchandise Financial Planning domain model [31],
and a bike-sharing system [32]. Due to its expressiveness,
Clafer has also been used to encode metamodels and Product-
Line architecture models [1, 31].

Berger et al. [33] note that the lack of experience reports
on variability modeling techniques may impede the progress
of variability modeling research. Through several studies,
they look at variability modeling experiences mainly in the
systems and automotive domains [3,34]. While these studies
discuss variability modeling in general, Alférez et al. [35]
investigate a domain-specific variability modeling language
VM for its suitability for the video domain. Furthermore,
Hubaux et al. [36] report on the industrial usage of TVL after
interviewing experts from the industry. Interestingly, their
participants mention the lack of convenient features such as
default values as an issue, something we also encountered
when modeling with Clafer.

However, apart from Murashkin’s work on automotive ar-
chitecture models [1], none of the above studies look ex-
plicitly at how to use Clafer and the modeling trade-offs
involved. Moreover, to the best of our knowledge, there
is no work that looks at variability modeling of cryptog-
raphy. That said, cryptographers do divide cryptographic
algorithms into different classes such as asymmetric and
symmetric encryption algorithms [37]. The Clafer model’s
structure mirrors this hierarchy and uses different classes of
algorithms to accomplish different tasks.

6. CONCLUSION
In this paper, we presented our experience with model-

ing cryptographic components with the Clafer modeling lan-
guage. We reported on the different design decisions we took
as well as conceptual and language challenges we faced. Our
experience with using Clafer has been positive so far, but we
believe that some of the main issues we ran into can be over-
come with support for a module system. We also discussed
related variability modeling languages that may be suited
for our needs. We believe that our reported experience is
useful for variability-modeling language designers, as well as
both researchers and practitioners who want to use Clafer
or want to apply variability modeling in similar domains.

7. ACKNOWLEDGMENTS
Our reviewers pointed us to the work on taxonomies. We

appreciate M. Antkiewicz’s feedback and constant help with
Clafer. Thanks to: J. Liang for clarifying the Choco-solver
APIs, F. Günther for help with crypto. domain knowledge,
and R. Kamath for the configurator. This work is funded
by the DFG, project E1 within CRC 1119 CROSSING.

8. REFERENCES
[1] A. Murashkin. Automotive electronic/electric

architecture modeling, design exploration and
optimization using Clafer. Master’s thesis, University
of Waterloo, 2014.

[2] M. Rosenmüller, N. Siegmund, T. Thüm, and
G. Saake. Multi-dimensional variability modeling. In
Proc. of the Workshop on Variability Modeling of
Software-Intensive Systems (VaMoS). 2011.

[3] T. Berger, S. She, R. Lotufo, A. W ↪asowski, and
K. Czarnecki. Variability modeling in the real: A
perspective from the operating systems domain. In
Proc. of the IEEE/ACM Int’l Conference on
Automated Software Engineering (ASE). 2010.

[4] K. B ↪ak, Z. Diskin, M. Antkiewicz, K. Czarnecki, and
A. W ↪asowski. Clafer: unifying class and feature

modeling. Software & Systems Modeling, 2014.

[5] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel.
An empirical study of cryptographic misuse in
Android applications. In Proc. of the Conference on
Computer and Communications Security (CCS), 2013.

[6] S. Fahl, M. Harbach, T. Muders, M. Smith,
L. Baumgärtner, and B. Freisleben. Why Eve and
Mallory love Android: An analysis of android SSL
(in)security. In Proc. of the Conference on Computer
and Communications Security (CCS), 2012.

[7] S. Arzt, S. Nadi, K. Ali, E. Bodden, S. Erdweg, and
M. Mezini. Towards secure integration of
cryptographic software. In Proc. of the SIGPLAN
Symposium on New Ideas in Programming and
Reflections on Software at SPLASH (Onward!), 2015.

[8] A. J. Menezes, P. C. Van Oorschot, and S. A.
Vanstone. Handbook of applied cryptography. 1996.

[9] D. Menascé. Security performance. IEEE Internet
Computing, 7(3):84–87, May 2003.

[10] X. Wang and H. Yu. How to break md5 and other
hash functions. In Advances in
Cryptology–EUROCRYPT 2005. Springer, 2005.

[11] K. Czarnecki, S. Helsen, and U. Eisenecker.
Formalizing cardinality-based feature models and their
specialization. Software Process: Improvement and
Practice, 10(1):7–29, 2005.

[12] Alloy. http://alloy.mit.edu.

[13] Choco. http://www.emn.fr/z-info/choco-solver.

[14] M. Antkiewicz, K. B ↪ak, A. Murashkin, R. Olaechea,
J. H. J. Liang, and K. Czarnecki. Clafer tools for
product line engineering. In Proc. of the Int’l Software
Product Line Conference (SPLC) Co-located
Workshops. 2013.

[15] C. Percival and S. Josefsson. The scrypt
password-based key derivation function. Internet
Engineering Task Force (IETF), 2012.

[16] National institute of standards and technology
(NIST). secure hashing – approved algorithms. http://
csrc.nist.gov/groups/ST/toolkit/secure hashing.html.

[17] M. Antkiewicz. Clafer cheat sheet.
http://t3-necsis.cs.uwaterloo.ca:
8091/Clafer%20Cheat%20Sheet.

[18] Accessing Clafer models programmatically.
http://www.clafer.org/2014/08/
accessing-clafer-models-programmatically.html.

[19] U. Aßmann, S. Zschaler, and G. Wagner. Ontologies,
meta-models, and the model-driven paradigm. In
Ontologies for software engineering and software
technology. Springer, 2006.

[20] C. Atkinson, M. Gutheil, and K. Kiko. On the
relationship of ontologies and models. In Proc. of the
2nd Workshop on MetaModelling (WoMM). 2006.

[21] K. Czarnecki, C. Hwan, P. Kim, and K. Kalleberg.
Feature models are views on ontologies. In Proc. of the
Int’l Software Product Line Conference (SPLC), 2006.

[22] D. Kalibatiene and O. Vasilecas. Survey on ontology
languages. In Perspectives in Business Informatics
Research. Springer, 2011.

[23] K. B ↪ak. Modeling and Analysis of Software Product
Line Variability in Clafer. PhD thesis, University of
Waterloo, 2013.

[24] A. Gyrard, C. Bonnet, and K. Boudaoud. An
ontology-based approach for helping to secure the etsi
machine-to-machine architecture. In Proc. of the IEEE
Int’l Conference on the Internet of Things (iThings).
IEEE, 2014.

[25] L. Cleophas, B. W. Watson, D. G. Kourie, and
A. Boake. TABASCO: A taxonomy-based domain
engineering method. In Proceedings of the 2005 Annual
Conference of the South African Institute of Computer
Scientists and Information Technologists. 2005.

[26] I. Schaefer, C. Seidl, L. Cleophas, and B. W. Watson.
SPLicing TABASCO: Custom-tailored software
product line variants from taxonomy-based toolkits. In
Proceedings of the 2015 Annual Conference of the
South African Institute of Computer Scientists and
Information Technologists. 2015.

[27] H. Eichelberger and K. Schmid. A systematic analysis
of textual variability modeling languages. In Proc. of
the Int’l Software Product Line Conference (SPLC).
2013.

[28] A. Classen, Q. Boucher, and P. Heymans. A
text-based approach to feature modelling: Syntax and
semantics of TVL. Science of Computer Programming,
76(12):1130 – 1143, 2011. Special Issue on Software
Evolution, Adaptability and Variability.

[29] H. Eichelberger, S. E. Sharkawy, C. Kröher, and
K. Shmid. INDENICA variability modeling language:
Language specification (version 1.26). Technical
report. http://projects.sse.uni-hildesheim.de/easy/
docs/ivml spec.pdf.

[30] M.-O. Reiser. Core concepts of the Compositional
Variability Management Framework (CVM) – a
practitioner’s guide. Technical report.
http://www.eecs.tu-berlin.de/fileadmin/f4/
TechReports/2009/tr-2009-16.pdf.

[31] Clafer example models.
http://t3-necsis.cs.uwaterloo.ca:8091/.

[32] M. H. ter Beek, A. Fantechi, and S. Gnesi. Applying
the product lines paradigm to the quantitative analysis
of collective adaptive systems. In Proceedings of the
19th Int’l Conference on Software Product Line, 2015.

[33] T. Berger, R. Rublack, D. Nair, J. M. Atlee,
M. Becker, K. Czarnecki, and A. W ↪asowski. A survey
of variability modeling in industrial practice. In Proc.
of the Workshop on Variability Modeling of
Software-Intensive Systems (VaMoS), 2013.

[34] T. Berger, D. Nair, R. Rublack, J. M. Atlee,
K. Czarnecki, and A. W ↪asowski. Three cases of
feature-based variability modeling in industry. In
Model-Driven Engineering Languages and Systems.
Springer, 2014.

[35] M. Alférez, J. A. Galindo, M. Acher, and B. Baudry.
Modeling variability in the video domain: Language
and experience report. Technical report, 2014.

[36] A. Hubaux, Q. Boucher, H. Hartmann, R. Michel, and
P. Heymans. Evaluating a textual feature modelling
language: Four industrial case studies. In Software
Language Engineering. Springer, 2011.

[37] D. R. Stinson. Cryptography: theory and practice.
CRC press, 2005.

http://alloy.mit.edu
http://www.emn.fr/z-info/choco-solver
http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html
http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html
http://t3-necsis.cs.uwaterloo.ca:8091/Clafer%20Cheat%20Sheet
http://t3-necsis.cs.uwaterloo.ca:8091/Clafer%20Cheat%20Sheet
http://www.clafer.org/2014/08/accessing-clafer-models-programmatically.html
http://www.clafer.org/2014/08/accessing-clafer-models-programmatically.html
http://projects.sse.uni-hildesheim.de/easy/docs/ivml_spec.pdf
http://projects.sse.uni-hildesheim.de/easy/docs/ivml_spec.pdf
http://www.eecs.tu-berlin.de/fileadmin/f4/TechReports/2009/tr-2009-16.pdf
http://www.eecs.tu-berlin.de/fileadmin/f4/TechReports/2009/tr-2009-16.pdf
http://t3-necsis.cs.uwaterloo.ca:8091/

