
CogniCrypt:
Supporting Developers in using Cryptography

Stefan Krüger∗, Sarah Nadi†, Michael Reif‡, Karim Ali†, Mira Mezini‡, Eric Bodden∗,
Florian Göpfert‡, Felix Günther‡, Christian Weinert‡, Daniel Demmler‡, Ram Kamath‡

∗Paderborn University, {fistname.lastname}@uni-paderborn.de
†University of Alberta, {nadi, karim.ali}@ualberta.ca

‡Technische Universität Darmstadt, {reif, mezini, guenther, weinert, demmler}@cs.tu-darmstadt.de,
fgoepfert@cdc.informatik.tu-darmstadt.de, aramachandrakamath@gmail.com

Abstract—Previous research suggests that developers often
struggle using low-level cryptographic APIs and, as a result,
produce insecure code. When asked, developers desire, among
other things, more tool support to help them use such APIs.
In this paper, we present CogniCrypt, a tool that supports
developers with the use of cryptographic APIs. CogniCrypt
assists the developer in two ways. First, for a number of common
cryptographic tasks, CogniCrypt generates code that implements
the respective task in a secure manner. Currently, CogniCrypt
supports tasks such as data encryption, communication over
secure channels, and long-term archiving. Second, CogniCrypt
continuously runs static analyses in the background to ensure
a secure integration of the generated code into the developer’s
workspace. This video demo showcases the main features of
CogniCrypt: youtube.com/watch?v=JUq5mRHfAWY.

Keywords-Cryptography, Code Generation, Variability Model-
ing, Code Analysis

I . INTRODUCTION

Cryptography is the primary means of protecting sensitive
data on digital devices from eavesdropping or forgery. For this
protection to be effective, the used cryptographic algorithms
must be conceptually secure, implemented correctly, and used
securely in the respective application. Despite the availability
of mature and (still-)secure-to-use cryptographic algorithms,
several studies have indicated that application developers
struggle with using the Application Programming Interfaces
(APIs) of libraries that implement these algorithms. For
example, Lazar et al. [14] investigated 269 cryptography-
related vulnerabilities and found that only 17% are related to
faulty implementations of algorithms, while 83% result from
application developers misusing cryptographic APIs. Other
studies suggest that approximately 90% of applications using
cryptographic APIs contain at least one misuse [6, 9].

To investigate the reasons for this widespread misuse, we
previously triangulated the results of four empirical studies, one
of which was a survey of Java developers who previously used
cryptographic APIs [19]. Our results show that the majority
of participants found the respective APIs hard to use. When
asked what would help them use these APIs, they suggested
better documentation, different API designs, and additional tool
support. In terms of API design, participants used terms like use
cases, task-based, and high-level. These suggestions indicate
that developers struggle with the fact that cryptographic APIs

reside on the low level of cryptographic algorithms instead of
being more functionality-oriented APIs that provide convenient
methods such as encryptFile(). When it comes to tool
support, participants suggested tools like a CryptoDebugger,
analysis tools that find misuses and provide code templates
or generate code for common functionality. These suggestions
indicate that participants not only lack the domain knowledge,
but also struggle with APIs themselves and how to use them.

In this paper, we present CogniCrypt, an Eclipse plugin that
enables easier use of cryptographic APIs. In previous work,
we outlined an early vision for CogniCrypt [2]. We have now
implemented a prototype of the tool that currently supports
developers in the following ways:

• Generate secure implementations for common program-
ming tasks that involve cryptography (e.g., data encryp-
tion).

• Analyze developer code and generate alerts for misuses
of cryptographic APIs.

II . COGNICRYPT IN A NUTSHELL

We will use the cryptographic task “Encrypt data using a
secret key” (ENC) as a running example throughout the paper.
When an application developer - CogniCrypt’s user - selects
this task, CogniCrypt generates code that implements a simple
encryption using Java’s Cipher API.

Figures 1 and 2 illustrate the steps that a user must follow
in CogniCrypt for ENC. First, to trigger the code generation,
the user clicks on the CogniCrypt button in Eclipse’s tool bar.
The dialog shown in Figure 1 then pops up and the user has
to select both the target project for code generation and ENC
from the list of supported tasks. The user then answers a few
high-level questions that do not require deep cryptography
knowledge. The answers to these questions help CogniCrypt
generate the appropriate source code. One such question for
ENC is “Should your key be derived from a user-specified
password?”. Once the user has answered all questions for
ENC, CogniCrypt presents the user with a list of algorithms
(or combinations thereof) in different configurations and auto-
selects the most secure one as shown in Figure 2. The user
may change the selection through a drop-down menu. For the
more keen user, CogniCrypt provides more detailed information
about the selection in the same window. After the user hits

Fig. 1: Dialog for task selection.

Fig. 2: Algorithm selection screen.

Fig. 3: Reporting misuses as Eclipse error markers.

the finish button, CogniCrypt generates two code artefacts into
the user’s Java project: the code that implements ENC into a
package named crypto, and a method that demonstrates how
the user may use the generated code in their own project.

In addition to code generation, CogniCrypt notifies the user
of misuses of cryptographic APIs by running a static-analysis
suite automatically every time the code is compiled. CogniCrypt
generates an Eclipse error marker for each detected misuse of
the supported cryptographic APIs. Figure 3 depicts a warning
issued by CogniCrypt when the user changes the generated
code for ENC to use the insecure encryption algorithm DES.

III . GENERATING SECURE CODE

CogniCrypt’s code-generation component enables it to
generate secure implementations for several cryptographic
programming tasks. Each task in CogniCrypt is specified using
three artefacts: a model describing the involved algorithms,
the task’s implementation, which CogniCrypt may provide the
user with, and a code snippet demonstrating its usage. Figure 5

illustrates the general workflow and necessary artefacts. We
will refer to different parts of the elements in Figure 5 using
the circled numbers shown in the figure (e.g., 1).

A. Modelling Cryptographic Algorithms in Clafer

The cryptography domain comprises a wide range of
algorithms, each can be configured in multiple ways. This
variability becomes an issue for developers with little or no
experience in cryptography, because not all algorithms and
configurations are secure to use in every context. Therefore,
developers have to figure out which algorithm may be used
in which situation. To help developers close this knowledge
gap, we systematize the domain knowledge by means of a
variability model 1 using Clafer [3], a variability modelling
language that facilitates a mix of class and feature modelling.
Clafer supports two constraint solvers that can instantiate a
model, i.e., generate instances of the model that satisfy all its
constraints. Any element in Clafer is called a clafer and can
either be abstract or concrete. The difference is that the instance
generator does not create instances for abstract clafers. In prior
work [18], we describe our modelling approach and discuss
the trade-offs of using other variability modelling languages.

Figure 4 shows a simplified version of the Clafer model
for ENC in CogniCrypt. The model defines the abstract
clafer Algorithm in Line 1. Lines 2–4 define the attributes
of Algorithm (name, security, and performance). The
model defines three abstract clafers that extend Algorithm

(i.e., inherit its attributes): SymmetricBlockCipher (Line 7),
KeyDerivationalgorithm (Line 15), and Digest (Line 24).
Each extension defines additional attributes. Moreover,
SymmetricBlockCipher defines two constraints (Lines 11–12).
The model then defines concrete clafers for all ENC-related
cryptographic algorithms by extending the three Algorithm-
type clafers (Lines 26–56). Finally, the clafer definition for
ENC (Lines 61–64) includes all its necessary cryptographic
algorithms such as a symmetric block cipher (Line 64). If the
user decides to derive the key from a password, the definition
is updated to require a key derivation algorithm.

B. Configuring a Solution

The generated code for each task is specified as an XSL-
based code template 5 to enable code generation by an XSL
transformation. Figure 6 depicts an excerpt of the stylesheet
for ENC representing part of its implementation. The code
implements a simple encryption bootstrapped with an initializa-
tion vector. Since each task may be implemented in multiple
ways, the stylesheet may contain one or more variability
points, that is statements that depend on the configuration
of task. ENC has one variability point: the argument to the call
Cipher.getInstance() (Lines 77–82). The class Cipher is
used for encrypting data, and the argument to getInstance()

specifies the encryption algorithm, block mode, and padding
scheme of the encryption [21, Section on class Cipher].

To generate valid code, CogniCrypt resolves this variability
by asking the user questions to help it configure a solution 2 .
For the supported currently tasks, the authors have developed

1 abstract Algorithm
2 name -> string
3 security -> integer
4 performance -> integer
5

6 abstract SymmetricBlockCipher
7 : Algorithm
8 keySize -> integer
9 mode -> Mode

10 padding -> Padding
11 [mode != ECB]
12 [padding != NoPadding]
13

14 abstract KeyDerivationAlgorithm
15 : Algorithm
16 iterations -> integer
17 outputSize -> integer
18 digest -> Digest?
19 [outputSize =128 || outputSize
20 =192 || outputSize =256]
21 [digest.security != Broken]
22 [iterations =1000]

23 abstract Digest : Algorithm
24 outputSize -> integer
25

26 AES: SymmetricBlockCipher
27 [name = "AES"]
28 [keySize =128 || keySize =192
29 || keySize= 256]
30 [keySize =128 => performance =
31 VeryFast && security =Medium]
32 [keySize > 128 => performance =
33 Fast && security =Strong]
34

35 DES: SymmetricBlockCipher
36 [name = "DES"]
37 [performance = VeryFast]
38 [security = Broken]
39 [keySize =56]
40

41 SHA_1: Digest
42 [name = "SHA-1"]
43 [performance = VeryFast]
44 [security = Weak]
45 [outputSize =160]

46 SHA_256: Digest
47 [name = "SHA-256"]
48 [performance = Fast]
49 [security = Strong]
50 [outputSize =256]
51

52 pbkdf2 : KeyDerivationAlgorithm
53 [name = "PBKDF2"]
54 [performance = Slow]
55 [digest]
56 [security = digest.security]
57

58 abstract Task
59 description -> string
60

61 PasswordBasedEncryption : Task
62 [description = "Encrypt data using
63 a given password"]
64 cipher -> SymmetricBlockCipher

Fig. 4: Clafer model for the password-based encryption (ENC) programming task.

Variability
Model

User Input

Constraint
Solver Instance

as XML

XSL
Stylesheet

XSL
Transformer Generated

Java Code

j

k

l
m

n

o

p

Fig. 5: The workflow of code generation in CogniCrypt.

these questions. The task selection determines the parts of the
stylesheet that are relevant to the user and the questions that
will be presented to the user. For example, for ENC, the user
may choose to derive the key from a password. If they do so,
CogniCrypt automatically modifies the Clafer model such that
a key derivation algorithm is also required to implement the
task, not only a symmetric block cipher as shown in Figure 4.
In general, each answer either adds constraints to the Clafer
model (e.g., setting a security level of the cipher to high or
very high) or influences the generated code directly (e.g., by
adding or removing a call or changing a parameter value).

After answering all questions, CogniCrypt runs the constraint
solver Choco [15] on the Clafer model to generate all its
instances, one of which is a version of the model with all
variability resolved 3 . For the ENC model in Figure 4, there
are at least three distinct instances with different values (128,
192, 256) for the keysize attribute of AES. The result is a list
of combinations of algorithms in different configurations that
CogniCrypt shows to the user in the final dialog sorted by
security level in descending order. CogniCrypt automatically
selects the first solution, but the user can change the selection.

C. Generating Code

CogniCrypt stores the selected configuration in an XML
file 4 . The code is then generated into the user’s project under

the package crypto by performing an XSL transformation
using SAXON [24] bootstrapped with the stylesheet and
the XML configuration file 6 . Two code artefacts 7 are
generated: the code implementing the task, and a method that
demonstrates how the developer can use the implementation.
This method is usually generated into an extra class in the same
package as the generated implementation code. In case a Java
file from the target project is currently opened in the editor,
CogniCrypt generates the method into this file. It also ensures
the method is generated within the respective class, but outside
existing methods. With the XSL stylesheet in Figure 6 and the
configuration from Figure 2 as inputs, CogniCrypt generates
the class Enc in Figure 7. The developer may choose to keep
the generated code as is or integrate it into their application
code in a different way.

IV. ENFORCING SECURE IMPLEMENTATIONS

In addition to generating code, CogniCrypt continuously
applies a suite of static analyses to the developer’s project
in the background. These analyses ensure that all usages of
cryptographic APIs remain secure, even when the developer
modifies the generated code for better integration into their
project or to add some functionality. Moreover, if the developer
uses the cryptographic APIs directly (i.e., without using the
code-generation component), running the analysis suite ensures
secure usage of the APIs.

To statically analyze the underlying Eclipse project, Cog-
niCrypt uses TS4J [4], a fluent interface in Java that defines
and evaluates typestate analyses [26]. A typestate analysis
helps CogniCrypt determine the set of allowed operations in
a specific context. TS4J is implemented as an Eclipse plugin
on top of the static analysis framework Soot [27]. CogniCrypt
reports misuses by generating error markers directly on the
left gutter within the Eclipse IDE as shown in Figure 3.

Figure 8 depicts one of the TS4J rules used in CogniCrypt
to detect the usage of the outdated encryption algorithm DES

66 <xsl:if test="//task/algorithm[@type=’
67 SymmetricBlockCipher’]">
68 <xsl:result-document href="Enc.java">
69 package <xsl:value-of select="//task/Package"/>;
70 <xsl:apply-templates select="//Import"/>
71 public class Enc {
72 public byte[] enc(byte[] data, SecretKey key){
73 byte [] ivb = new byte [16];
74 SecureRandom.getInstanceStrong().nextBytes(ivb);
75 IvParameterSpec iv = new IvParameterSpec(ivb);
76 Cipher c = Cipher.getInstance("
77 <xsl:value-of select="//task/algorithm[@type=’
78 SymmetricBlockCipher’]/name"/>/
79 <xsl:value-of select="//task/algorithm[@type=’
80 SymmetricBlockCipher’]/mode"/>/
81 <xsl:value-of select="//task/algorithm[@type=’
82 SymmetricBlockCipher’]/padding"/>");
83

84 c.init(Cipher.ENCRYPT_MODE, key, iv);
85 byte [] res = c.doFinal(data);
86 byte [] ret = new byte[res.length + ivb.length];
87 System.arraycopy(ivb, 0, ret, 0, ivb.length);
88 System.arraycopy(res, 0, ret, ivb.length, res.length);
89 return ret;
90 }
91 }
92 </xsl:result-document>
93 </xsl:if>

Fig. 6: XSL stylesheet for ENC.

94 public class Enc {
95 public byte[] enc(byte[] data, SecretKey key) {
96 byte[] ivb = new byte[16];
97 SecureRandom.getInstanceStrong().nextBytes(ivb);
98 IvParameterSpc iv = new IvParameterSpec(ivb);
99

100 Cipher c = Cipher.getInstance("AES/CBC/PKCS5Padding");
101 c.init(Cipher.ENCRYPT_MODE, key, iv);
102 byte [] res = c.doFinal(data);
103 byte [] ret = new byte[res.length + ivb.length];
104 System.arraycopy(ivb, 0, ret, 0, ivb.length);
105 System.arraycopy(res, 0, ret, ivb.length, res.length);
106 return ret;
107 }
108 }

Fig. 7: Generated code for ENC.

when instantiating a Cipher object (e.g., Line 100 in Figure 7).
The first part of the rule (Line 119) tracks the parameter of
calls to Cipher.getInstance() (as defined in Line 109) and
binds it to the temporary variable CIPH. The rule also stores
the statement in variable GETINS for later reference. After
the orElse() keyword (Line 121), the rule checks whether
the value bound to CIPH equals "DES". If that is the case,
CogniCrypt reports the error "DES is used" at the statement
stored in GETINS as Figure 3 shows.

V. INTEGRATED COMPONENTS

CogniCrypt provides support for cryptographic APIs in a
task-based manner. In this section, we discuss the tasks that
CogniCrypt currently supports, providing short conceptual
descriptions, how they are implemented, and the decisions users
have to make in the tool. We also discuss the cryptographic
algorithms that CogniCrypt supports.

A. Supported Tasks

1) Symmetric Encryption :

109 String CIPHER_CALL = "<javax.crypto.Cipher:
110 javax.crypto.Cipher getInstance(java.lang.String)>";
111

112 enum Var { CIPH };
113 enum StmtID {GETINS}
114

115 protected Done<Var, State, StmtID> atCallToReturn(
116 AtCallToReturn<Var, State, StmtID> d) {
117

118 return d.atCallTo(CIPHER_CALL).
119 always().trackParameter(0).as(CIPH).
120 and().storeStmtAs(GETINS).
121 orElse().atAssignTo(CIPH).
122 ifValueBoundTo(CIPH).startsWith("DES").
123 reportError("DES is used").atStmt(GETINS);
124 }

Fig. 8: TS4J Rule to find usages of DES.

a) Description: encryption of data as a byte array.
b) Implementation: implementations of symmetric block

ciphers in SunJCE Provider [23] such as AES, Triple-DES.
c) User Decisions: CogniCrypt asks the user whether the

application encrypts large chunks of data. If so, encryption
is performed iteratively on fractions of the plaintext instead.
Subsequently, it allows the user to decide whether the encryp-
tion key should be derived from a password, or created by
traditional means of a key generator.

2) Password Storage:
a) Description: transformation of passwords such that

they can be securely stored (i.e., hashing and salting).
b) Implementation: implementations of key derivation

functions in SunJCE Provider [23] such as PBKDF2.
3) Secure Communication:

a) Description: a cryptographic channel based on the
Transport Layer Security (TLS) protocol [8] for securely
transporting data from one endpoint to another. The channel
ensures confidentiality and integrity of the communicated data
as well as authenticity of the communication partners.

b) Implementation: based on the Java TLS implementa-
tion in the Java Secure Socket Extension (JSSE) [22].

c) User Decisions: CogniCrypt first asks the user whether
they wish to implement the client or the server side of a connec-
tion, requesting the corresponding internet-address. For client
implementations, if the server is already known, CogniCrypt
offers to perform a trial connection to test connectivity and
cryptographic parameters. CogniCrypt then allows the user
to select the desired security level, providing a safe default
option for optimal cryptographic protection. In particular,
CogniCrypt disables insecure cryptographic parameters (i.e.,
cipher suites). This feature is crucial, because TLS has a
vast number of parameter choices, and, in principle, allows
to configure insecure cipher suites that, for example, omit
encryption or enable known attacks like RC4 weaknesses [1].

4) Secure Long-Term Storage:
a) Description: MoPS [28] ensures the integrity and

authenticity of documents over long periods of time, since
classical protection schemes (e.g., digital signatures) do not
provide everlasting security. MoPS allows users to create cus-
tomized long-term protection schemes by combining reusable

components extracted from other existing solutions, improving
performance and gaining flexibility.

b) Implementation: The reference implementation of
MoPS by Weinert et al. [28] has a RESTful API for configuring
and maintaining file collections on remote systems. Using the
API without proper guidance, the user may end up with a
configuration that uses outdated cryptographic primitives (e.g.,
SHA-1), performs poorly due to improper component selection,
or relies on inappropriate trust assumptions.

c) User Decisions: CogniCrypt asks the user at most four
high-level questions (e.g., “Do you plan to add new files to your
collection frequently?”). These questions identify the required
features and the trust assumptions the user is willing to make.
The Clafer model then translates the user choices into the most
suitable component selection based on the recommendations of
Weinert et al. [28]. Finally, CogniCrypt generates glue code to
configure the MoPS system accordingly and provide methods
for securely storing files in the system.

5) Secure Multi-Party Computation:
a) Description: ABY [7] is a framework for mixed-

protocol secure two-party computation (STC). It allows two
parties to apply a function to their private inputs and reveal
nothing but the output of the computation. ABY enables devel-
opers to implement STC applications by offering abstractions
from the underlying protocols. Furthermore, ABY can securely
convert between different protocol types, improving efficiency.

b) Implementation: ABY is written in C/C++ to achieve
high efficiency for the underlying primitives (bit operations,
symmetric encryption) and has been encapsulated in Java Native
Interface (JNI) wrappers to be used by CogniCrypt.

c) User Decisions: CogniCrypt offers the user several
STC example applications, e.g., computing the Euclidean
Distance between private coordinates. The user can select
different properties, depending on the deployment scenario. In
the future, we plan to integrate custom applications as well.

B. Implementations of Cryptographic Algorithms

CogniCrypt mainly capitalizes on algorithm implementations
from the Java Cryptography Architecture (JCA) [21]. For the
first three tasks described above, we have not implemented
any cryptographic algorithms ourselves, but merely accessed
the existing ones through the JCA APIs. In the future, we
would like cryptography experts to contribute new algorithm
implementations to CogniCrypt to extend support for even the
most novel of cryptographic schemes. The cryptography re-
searchers among the authors have already started integrating an
implementation of a novel public-key cryptographic algorithm.

Lindner and Peikert [16] present a new public-key encryption
algorithm (LP11) based on the learning-with-errors problem.
As a lattice-based primitive, it is currently believed to withstand
attacks on classical and quantum computers, a property
typically referred to as post-quantum security. For efficiency
reasons, we implemented LP11 in C++ and integrated it into
CogniCrypt using JNI. We made three methods of the C++
implementation available for Java: key generation, encryption,
and decryption, and implemented the necessary JCA interfaces

for encryption and key generation. Not only does this setup
allow for an easy integration into CogniCrypt, but it also
enables standalone usage of LP11.

Unfortunately, the interfaces provided by JCA do not com-
pletely fit the properties of post-quantum encryption schemes.
In particular, the interface provides two methods for key-
pair generation: one bootstrapped with a key size, the other
one allowing for more parameters to be included in the key
generation. As one key size is not sufficient for LP11, our
implementation only supports the other method. Calling the
incorrect method causes CogniCrypt to alert the developer, and
throws an UnsupportedOperationException at runtime.

VI. RELATED WORK

We are not aware of any integrated tool that combines code
generation and static analysis for misuses of Java cryptographic
APIs. However, there has been a number of static analysis tools
that detect misuses of cryptographic and other security APIs
in Java [6, 9–11, 20, 25]. Unlike CogniCrypt, these tools do
not provide any IDE integration and have hard-coded checks.
Additionally, CogniCrypt enables cryptography experts, who
may not be experts in static analysis, to define new rules more
easily through TS4J.

CogniCrypt generates task-based usage examples for Java
cryptographic APIs. Although similar tools exist [5, 12, 13, 17],
they rely on the mining of syntactically correct usages of
the respective APIs, which is not a viable approach for
cryptographic APIs for two reasons. First, many usages of
cryptographic APIs are syntactically correct programs are also
insecure. Second, it appears that most usage examples of
cryptographic APIs are insecure [6, 9, 14], causing the mining
of such usages to be a difficult endeavour.

VII . CONCLUSION

Cryptography can help secure sensitive data, but only if
applications use cryptographic components securely. We have
presented CogniCrypt, an Eclipse plugin that enables developers
to securely integrate such components into their Java projects,
especially if they have little experience with cryptography.
CogniCrypt smoothly integrates into a developer’s workflow
to generate secure code for cryptographic tasks and detect
misuses of cryptographic APIs in their code.

For now, all tasks have been integrated by the authors. We
plan to open-source CogniCrypt toward the end of 2017, and we
encourage cryptography experts to integrate their own projects
into it. We also plan to conduct a user study to evaluate whether
CogniCrypt is capable of improving the security of the average
developers’ code.

ACKNOWLEDGMENTS

This work was funded by the DFG as part of projects P1,
S4, S6, E3, and E1 within the CRC 1119 CROSSING as well
as by the BMBF and the HMWK within CRISP. We would
like to thank Mohammad Hassan Zahraee, Patrick Hill, André
Sonntag, and Sneha Reddy for their work on CogniCrypt.

REFERENCES

[1] N. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poet-
tering, and J. C. N. Schuldt. On the security of RC4 in
TLS. In USENIX Security, pages 305–320, 2013.

[2] S. Arzt, S. Nadi, K. Ali, E. Bodden, S. Erdweg, and
M. Mezini. Towards secure integration of cryptographic
software. In International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software
(Onward!), 2015.

[3] K. Bak, Z. Diskin, M. Antkiewicz, K. Czarnecki, and
A. Wąsowski. Clafer: unifying class and feature modeling.
Software and System Modeling, 15(3):811–845, 2016.

[4] E. Bodden. TS4J: a fluent interface for defining and
computing typestate analyses. In International Workshop
on State of the Art in Java Program analysis (SOAP),
pages 1:1–1:6, 2014.

[5] R. P. L. Buse and W. Weimer. Synthesizing API usage
examples. In International Conference on Software
Engineering (ICSE), pages 782–792, 2012.

[6] A. Chatzikonstantinou, C. Ntantogian, G. Karopoulos,
and C. Xenakis. Evaluation of cryptography usage in
android applications. In International Conference on Bio-
inspired Information and Communications Technologies
(BIONETICS), pages 83–90, 2016.

[7] D. Demmler, T. Schneider, and M. Zohner. ABY – a
framework for efficient mixed-protocol secure two-party
computation. In Network and Distributed System Security
Symposium (NDSS), 2015.

[8] T. Dierks and E. Rescorla. The Transport Layer Security
(TLS) Protocol Version 1.2. RFC 5246 (Proposed
Standard), 2008. Updated by RFCs 5746, 5878, 6176.

[9] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An
empirical study of cryptographic misuse in android appli-
cations. In Conference on Computer and Communications
Security (CCS), pages 73–84, 2013.

[10] S. Fahl, M. Harbach, T. Muders, M. Smith, L. Baumgärt-
ner, and B. Freisleben. Why Eve and Mallory love
Android: an Analysis of Android SSL (In)security. In
Conference on Computer and Communications Security
(CCS), pages 50–61, 2012.

[11] B. He, V. Rastogi, Y. Cao, Y. Chen, V. N. Venkatakrishnan,
R. Yang, and Z. Zhang. Vetting SSL usage in applications
with SSLINT. In IEEE Symposium on Security and
Privacy, pages 519–534, 2015.

[12] I. Keivanloo, J. Rilling, and Y. Zou. Spotting working
code examples. In International Conference on Software
Engineering (ICSE), pages 664–675, 2014.

[13] J. Kim, S. Lee, S. Hwang, and S. Kim. Towards an
intelligent code search engine. In Conference on Artificial
Intelligence (AAAI), 2010.

[14] D. Lazar, H. Chen, X. Wang, and N. Zeldovich. Why
does cryptographic software fail?: a case study and open
problems. In ACM Asia-Pacific Workshop on Systems

(APSys), pages 7:1–7:7, 2014.
[15] J. Liang, M. Antkiewicz, A. Murashkin, and J. Ross.

Choco solver - A Backend for Clafer using the Choco4
solver, 2016. URL https://github.com/gsdlab/chocosolver.

[16] R. Lindner and C. Peikert. Better key sizes (and attacks)
for lwe-based encryption. In Cryptographers’ Track at
the RSA Conference (CT-RSA), pages 319–339, 2011.

[17] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, and
A. Marcus. How can I use this method? In International
Conference on Software Engineering (ICSE), pages 880–
890, 2015.

[18] S. Nadi and S. Krüger. Variability modeling of crypto-
graphic components: Clafer experience report. In Inter-
national Workshop on Variability Modelling of Software-
intensive Systems (VaMoS), pages 105–112, 2016.

[19] S. Nadi, S. Krüger, M. Mezini, and E. Bodden. Jumping
through hoops: why do Java developers struggle with
cryptography APIs? In International Conference on
Software Engineering (ICSE), pages 935–946, 2016.

[20] L. Onwuzurike and E. D. Cristofaro. Danger is my middle
name: experimenting with SSL vulnerabilities in android
apps. In ACM Conf. on Security & Privacy in Wireless
and Mobile Networks (WiSec), pages 15:1–15:6, 2015.

[21] Oracle. Java Cryptography Architecture (JCA),
2016. URL https://docs.oracle.com/javase/8/docs/
technotes/guides/security/crypto/CryptoSpec.html.

[22] Oracle. Java Secure Socket Extension (JSSE) Reference
Guide, 2017. URL https://docs.oracle.com/javase/8/docs/
technotes/guides/security/jsse/JSSERefGuide.html.

[23] Oracle. Cipher Implementations in SunJCE Provider,
2017. URL https://docs.oracle.com/javase/8/
docs/technotes/guides/security/SunProviders.html#
SunJCEProvider.

[24] Saxonica. The SAXON XSLT and XQuery Processor,
2016. URL http://saxon.sourceforge.net.

[25] S. Shao, G. Dong, T. Guo, T. Yang, and C. Shi. Modelling
analysis and auto-detection of cryptographic misuse in
android applications. In IEEE International Conference
on Dependable, Autonomic andSecure Computing (DASC),
pages 75–80, 2014.

[26] R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability. IEEE
Transactions on Software Engineering (TSE), 12(1):157–
171, 1986.

[27] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pom-
inville, and V. Sundaresan. Optimizing java bytecode
using the soot framework: Is it feasible? In Compiler
Construction (CC), pages 18–34, 2000.

[28] C. Weinert, D. Demirel, M. Vigil, M. Geihs, and J. Buch-
mann. MoPS: A Modular Protection Scheme for Long-
Term Storage. In Asia Conference on Computer and
Communications Security (ASIACCS), pages 436–448,
2017.

https://github.com/gsdlab/chocosolver
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SunJCEProvider
https://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SunJCEProvider
https://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SunJCEProvider
http://saxon.sourceforge.net

