MigMate: A VS Code Extension for LLM-based Library Migration
of Python Projects

Matthias Kebede
New York University Abu Dhabi
Abu Dhabi, United Arab Emirates
msk9862@nyu.edu

Mohayeminul Islam
University of Alberta
Edmonton, Alberta, Canada
mohayemin@ualberta.ca

Abstract

Modern software relies heavily on third-party software libraries
to streamline the development process. The act of switching one
library for a similar counterpart, called library migration, natu-
rally occurs as libraries become outdated or unsuitable for the
project. Manually migrating from one library to another is a time-
consuming task. Our previous research developed MigrateLib, a
command-line LLM-based migration tool that can automate the
complete migration process. In this paper, we present our open-
source VS Code IDE plugin, MigMate, that builds on MigrateLib by
integrating the automated migration process into the developer’s
existing development environment. MigMate provides an interac-
tive experience, allowing developers to view and confirm changes
before they are applied. A preliminary user study shows that plugin
usage consistently reduces the time taken to complete a library
migration task, and it scores highly on the System Usability Scale.

CCS Concepts

« Software and its engineering — Software maintenance tools;
Integrated and visual development environments; - Human-
centered computing — Usability testing.

Keywords
VS Code, IDE plugin, LLM, library migration, third-party libraries

1 Introduction

Modern software relies on third-party libraries to streamline de-
velopment. Libraries provide reusable code and abstraction, but
also introduce new maintenance challenges [1]. Managing libraries
can mean updating a version or performing a full library migration,
where one library is replaced by another. Library migrations are
difficult and time-consuming when done manually [13], as devel-
opers must learn the Application Programming Interfaces (APIs) of
both libraries and then perform code transformations across their
codebase. Although some tools recommend replacement libraries
or map APIs between the two libraries [7, 9, 20, 21], they still leave
significant manual effort for the developer.

Conference’17, Washington, DC, USA
2026. ACM ISBN 978-x-xxxx-xxxX-x/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

May Mahmoud
New York University Abu Dhabi
Abu Dhabi, United Arab Emirates
m.mahmoud@nyu.edu

Sarah Nadi
New York University Abu Dhabi
Abu Dhabi, United Arab Emirates
sarah.nadi@nyu.edu

Accordingly, both ourselves [10] and other researchers [2] have
turned to investigating whether Large Language Models (LLMs)
can be used to fully automate the library migration process, in-
cluding both API mapping and code transformation. Our initial
empirical study showed that LLMs can correctly perform a high
portion of migrations in benchmark evaluations [10]. Based on
the insights gained from the empirical study, we developed an
LLM-based end-to-end Command Line Interface (CLI) for library
migrations, MigrateLib, and evaluated it on additional reposito-
ries [11].

While standalone tools can be quite powerful, they add fric-
tion to the development process by forcing developers out of their
workflow [15]. Ideally, such tools should be integrated into an In-
tegrated Development Environment (IDE) to provide convenience
and improve usability. To enable more streamlined usage of Mi-
grateLib, in this paper, we develop a Visual Studio Code (VS Code)
plugin called MigMate. Under the hood, MigMate uses the core
functionality of MigrateLib, but adds an interactive UI that inte-
grates into the developer workflow. It allows developers to view
any suggested modifications to their code and approve or reject
individual changes, giving the developer more control over the mi-
gration process and building trust in the tool. In doing so, our work
contributes a human-in-the-loop approach to automated library
migration that addresses key usability challenges.

We open-source MigMate at https://github.com/sanadlab/MigMate.
We also provide a video demonstrating how MigMate works at
https://www.youtube.com/watch?v=LHEmUFFz8_o.

2 Background and Related Work

Library migration is a process where a developer replaces a source
library with a target library that provides similar functionality,
without changing the behavior of the project. This requires up-
dating the dependencies, updating the API usage in the code, and
verifying behavior. Migrations typically happen between analogous
library pairs, such as requests [19] and httpx [5], which overlap
in functionality but differ in syntax and configuration [7, 9].
Researchers have developed tools to recommend or compare
analogous libraries. MigrationAdvisor [9] provides Java recom-
mendations via a web application, while LibComp [7] integrates
suggestions into Intelli] IDEA. These tools lower the burden of
selecting a target library but focus mainly on recommendations,
not code transformation. API mappings can also be discovered by

https://orcid.org/0009-0000-3741-4133
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/sanadlab/MigMate
https://www.youtube.com/watch?v=LHEmUFFz8_o

Conference’17, July 2017, Washington, DC, USA

mining repositories [20] or analyzing documentation [21]. Other
approaches like SOAR [18] use synthesis and error messages for
automated migration, while recent work explores applications of
LLMs for library migration [2, 10].

In our own previous work [10], we used Llama 3.1 (70B), GPT-
40 mini, and GPT-40 on a subset of the code changes found in
PyMigBench [12], a benchmark of real-world Python library migra-
tions mined from open-source repositories. This empirical study
compared LLM-generated migrations against developer implemen-
tations to assess correctness. A code change is considered correct if
it exactly matches the developer’s change or is manually identified
as a valid alternative. A migration is considered partially correct if
only some developer changes were matched, or fully correct if all
changes were matched without making any additional refactoring
changes. The results showed that GPT-40 achieved the highest ac-
curacy, with 94% of migrations containing at least one correct code
change and 57% of migrations being fully correct. GPT-40 mini per-
formed similarly with 93% of migrations partially correct and 49%
fully correct, while Llama 3.1 trailed behind with 51% of migrations
partially correct and 26% fully correct. This evaluation shows that
LLMs are already capable of handling complex migrations, with
room for improvement.

Using the insights from our empirical study, we designed a CLI
tool, MigrateLib, that combines LLMs with pre- and post-processing
steps (see Sec. 3) to improve migration correctness [11]. We find
that MigrateLib can migrate 32% of the migrations with complete
correctness. Of the remaining migrations, only 14% of the migration-
related changes are, on average, left for developers to fix. This need
for human intervention motivated us to build an IDE plugin to
allow for more seamless interaction.

Beyond technical methods of library migration, designing usable
developer tools is crucial for integrating the automated process into
the IDE. Research shows that developers need encouragement to
trust in automated refactoring tools, with clear previews of changes
before applying them [4]. Visualization studies further suggest that
inline displays with optional panels are preferred [15]. We adopt
these insights in our design of MigMate by combining automated
support with human oversight to improve adoption and trust.

3 MigMate Design

Workflow and UL We use guidelines from research on plugin
usability [4, 15] and VS Code’s documentation [16, 17] to design
MigMate to be intuitive and efficient. We specifically design these
features:

e Context-Aware Activation: MigMate loads lazily using VS
Code Activation Events [16]. It activates when a workspace con-
tains Python source files or a recognized dependency file (e.g.,
requirements.txt, pyproject.toml). This approach prevents unnec-
essary resource usage when the plugin is not explicitly needed.

o Plugin Configuration: MigMate provides flexible configura-
tion options through the VS Code Settings interface, allowing
developers to adjust plugin behavior to suit their workflows.

o Seamless Migration Trigger: Developers can start a migra-
tion directly from the dependency file with a hover or context

Matthias Kebede, May Mahmoud, Mohayeminul Islam, and Sarah Nadi

menu. These triggers are easily accessible and keep the work-
flow entirely within the IDE, mitigating the burden of context-
switching [15].

e Guided Library Selection: A Quick Pick [17] menu lists source
libraries and subsequently prompts the developer to input the
name of a target library. Quick Picks are a perfect choice for this
step since they work well to facilitate short multi-step inputs.

e Automated Migration Execution: MigMate performs the mi-
gration, runs the project’s test suite, and generates a final preview.
It also shows a progress bar during the migration and warns the
user in the event of migration errors or test failures.

o Interactive Migration Preview: Developers can review changes
before applying them selectively. This step addresses known LLM
issues such as unrelated edits [6, 10], increasing the developer’s
trust in and control over the tool.

o Test Results View: A Webview [17] displays a summary of
migration test results. In the event that one or more tests fail
after migration, a warning notification will prompt the user to
open the Webview, helping developers investigate failures and
identify the root cause.

CLI Overview. MigMate uses MigrateLib as the backend, so we
first briefly discuss it and its use in our plugin.

MigrateLib [11] takes the names of the desired source and target
library as its primary arguments, then proceeds through multiple
iterative rounds. The initial premig round simply establishes a base-
line for the project by running the existing test suite. The lImmig
round sends the relevant code to an LLM and retrieves migrated
content to be applied to the code. Subsequent rounds focus on
refining the migration and ensuring its correctness.

MigrateLib leverages test results to determine the status of the
migration. After the LLM migration, MigrateLib compares the test
results before and after migration. If the results are the same, it
considers the migration to be correct and does not proceed any
further. Otherwise, MigrateLib runs two post-processing rounds try-
ing to correct the migrations (specifically re-including code where
the LLM says that the rest of the code stays the same and adding
the async keyword to function definitions that use asynchronous
libraries), and similarly runs the tests to verify the migration. Mi-
grateLib preserves the test reports of each round for the user to
review.

Integration with MigrateLib. MigMate acts as an intermedi-
ary between VS Code and the underlying MigrateLib CLI tool [11].
When starting a migration, MigMate spawns a child process to run
MigrateLib in the background. The source and target libraries are
passed to MigrateLib’s initiating command, along with certain con-
figuration options as additional arguments. MigMate then parses
the migration output for use in the Migration Preview and Test
Results views.

4 MigMate Workflow

In order to illustrate the expected developer workflow, we present
a sample migration from requests to httpx using MigMate. The
following are the high-level steps involved, which are explained in
detail in the relevant subsections and shown in Fig. 1.

MigMate: A VS Code Extension for Python Library Migration

&
a
K] Initiate Provide View test
% Source/Target results Review changes
- | —
1
Yes Display test

results
o
S| | Call PyMigTool Apply
g with arguments changes

Display migration

preview
s
=]
E, Pverform Save migrated files
E>. migration and test reports
a

Figure 1: MigMate Workflow

(1) Activate Plugin: The developer opens a Python project in
VS Code. MigMate automatically activates after detecting the
appropriate source files.

(2) Initiate a Migration: The developer then opens the depen-
dency file (requirements.txt) and hovers over requests, then se-
lects Migrate requests (Fig. 2).

(3) Select Libraries: requests becomes the source library for the
migration. The developer enters httpx into the provided text
input to set the target library.

(4) Run Migration: MigMate calls MigrateLib using the selected
libraries and current configuration. A progress bar is displayed
in the notification area.

(5) View Test Results: MigMate parses MigrateLib’s test report
files and provides a summary comparing pre-migration test
results to post-migration results (Fig. 5).

(6) Review Proposed Changes: MigMate opens a Migration Pre-
view window (Fig. 4). The developer selects the desired changes
to be applied, then closes the preview.

(7) Apply Changes: MigMate applies the approved changes to the
source files.

4.1 Initiating Migration

MigMate provides two main ways to initiate a migration. Given that
the dependency file contains the Python libraries used in the project,
it serves as a natural starting point for the migration process. The
first approach involves right-clicking within the dependency file
to bring up a context menu that provides a migration command.
Alternatively, the user can move the cursor over the name of a
library in the dependency file and wait for a hover menu to appear
(Fig. 2).

Regardless of the trigger used, MigMate will present a Quick Pick
menu (Fig. 3) to the user where they can input the source and target
library names. When using the hover trigger, the source library will
automatically be set as the library used to initiate it. Developers
can also initiate a migration directly through the Command Palette.
Selecting the "MigMate: Migrate a Library’ command will open a
Quick Pick just as when using the context menu trigger.

4.2 Test Results

MigMate also offers a test result viewer, which the user is prompted
to open in the event that any tests fail at the end of the migration

Conference’17, July 2017, Washington, DC, USA

requirements.txt
requests

1

2 https://pypi.org/project/requests/
3

4 MigMate:

5 Migrate requests

6

Figure 2: Hover Trigger

Migration: Select Source

I ‘Select a source library to migrate *FROM* I

requests

httpx

numpy
pandas
flask

& Enter library name manually...

Figure 3: Source Library Selection

process. This feature is implemented as a Webview, an embedded
browser panel controlled by the plugin. The viewer reads the test
report files produced by MigrateLib and renders the data as format-
ted HTML (Fig. 5). This allows developers to view a summary of
pre- and post-migration test results, the specific error messages of
each test, and the contents of the log file created during migration.
Clicking the ’Go’ button next to each test navigates to the relevant
test file.

4.3 Migration Preview

A key feature of MigMate is that it requires explicit user approval
before applying any migration changes. To generate the preview,
MigMate compares the unmodified workspace files with the mi-
grated copies saved by MigrateLib. Two preview styles are available,
each offering a convenient interface for reviewing and managing
changes across multiple files.

The first style leverages VS Code’s built-in Refactor Preview win-
dow, which lists all suggested modifications by file. Developers can
selectively enable or disable individual changes using checkboxes,
providing fine-grained control over which are accepted. Upon con-
firmation, MigMate applies all approved modifications in a single
bulk edit. Unselected changes are safely discarded without impact-
ing the code.

Alternatively, a custom Webview interface (Fig. 4) displays a
collapsible list of files and supports the incremental application
of edits. With this style, developers can apply individual changes,
all changes within a single file, or the entire migration at once.
If the migration is accepted as a whole, the Webview will close
automatically. Otherwise, the user manually exits by selecting the
‘Close Preview’ button once they are satisfied with the migration
changes that they have already applied.

Both preview styles enable detailed selection of edits but differ
in terms of when those edits are performed. The Refactor Preview

Conference’17, July 2017, Washington, DC, USA

%) File Edit Selection View

(&}

<«
Migration Preview X @

@ test = settin

Migration Preview

Source Library
requests

¥ow O

projectpy ¥

B

“import requests
+import httpx

def get_example_status():
req = requests https:/ /. example. con”)
+ req = httpx.ge ps://unw.exanple. con”)

return req.status_code

def

e.con/data”,
“limit": 5)

for_status()
return resp.json()

post_example_data():

with requests. Session() as session:

+ with httpx.Client() as session:

post_resp = session.post(
“https://api.exanple. con/submit”,
json={"key": "value"}

post_resp.raise_for_status()

return post_resp

test projectpy b 3 changes

O]
i

Q [Extension Development Host] Sample-Project

Torget Library

httpx

Matthias Kebede, May Mahmoud, Mohayeminul Islam, and Sarah Nadi

(%24 BEoBsBmn - & Xx

Files to Update:

ViewFile View Diff RSP

ViewFile View Diff IR
L EE Avply All Changes

Figure 4: Migration Preview (Webview) for requests to httpx

Repository:
Sample-Project

Migration.
requests — aiohttp

Migration Started:
2025-10-18 13:11:09

Migration Test Results: 3 3 tests failed in round: LLM Migration
Test Summary

Post-Migration

Pre-Migration
(LLM Migration)

Failed: 0 Skipped: 0 Failed: 3 Skipped: 0

Test Failures

v LM Migration tests/test_project py test_get example_status

async def functions are not natively supported.
You need to install a suitable plugin for your async framework, for example:
- anyio
- pytest-asyncio
- pytest-tornasync
- pytest-trio
- pytest-tuisted

Figure 5: Migration Test Results

aggregates approved changes into one confirmed update, whereas
the Webview applies them incrementally as the developer proceeds.
In either case, MigMate ensures that every modification is explicitly
approved, preventing unintended modifications by the LLM and
reinforcing developer trust in the migration process.

4.4 Configuration

Before performing a migration, developers may wish to customize
how MigMate operates. Configuration options are accessible through
the VS Code Settings interface (Fig. 6) or by editing a project-level
settings.json file. The available parameters are organized into two
categories based on their purpose:

Migration Flags: These settings mirror the command-line ar-
guments of MigrateLib and control how migrations are executed.
One notable item is the --11m flag, which allows the user to pass
the name of the LLM model that they wish to use. MigrateLib cur-
rently supports OpenAl models, with GPT-40 mini being the default
model, and checks for an OPENAI_API_KEY environment variable.

MigMate

Migmate > Flags: Max File Count

Maximum number of files to migrate. Abort the migration if more files are found.

20

Migmate > Flags: LLM Client

Select an LLM client to use for migration.

gpt-4o-mini

Migmate > Options: Preview Style
Choose how migrated files are shown during preview.

Webview v

Figure 6: Plugin Configuration

Extension Options: These configurations adjust plugin-specific
usability features. Developers can choose between the Webview or
Refactor Preview as their preferred migration preview method and
toggle whether a preview is shown in the event of post-migration
test failures.

5 Preliminary Evaluation

To evaluate the usability of MigMate, we conduct a preliminary
small-scale user study with undergraduate students at NYU Abu
Dhabi. We ask participants to perform library migration tasks both
using MigMate and manually while collecting their feedback.

5.1 Study Design

We provide participants with a Python project that makes use of two
libraries, requests and tablib, which can be replaced with httpx and
pandas, respectively. We refer to these as Pair A (requests — httpx)
and Pair B (tablib — pandas). After completing a short warm up

MigMate: A VS Code Extension for Python Library Migration

Table 1: Participant Grouping

Group 1stTask LibPair 2nd Task Lib Pair

Al Manual A Assisted B
A2 Assisted A Manual B
B1 Manual B Assisted A
B2 Assisted B Manual A

task to familiarize them with the project’s code, we ask participants
to perform library migration tasks as follows:

e Manual Migration: Participants perform one migration
task without using MigMate. They may access API documen-
tation and other online resources, but cannot use LLMs to
assist them. This serves as a baseline measurement.

o Plugin-Assisted Migration: Participants perform a second
different migration task with the help of MigMate. They may
additionally make use of the same resources as in the manual
migration task.

5.1.1 Tasks. For Pair A, the project contains 14 requests usages
spread across 2 files. Most of these are one-to-one changes that
replace individual function calls and imports with their httpx coun-
terparts. In addition, there are a few more complicated many-to-one
changes due to inherent differences between the two libraries. Im-
portantly, migrating this pair does not require any async usage. For
Pair B, there are 22 tablib usages across 2 files, including a few one-
to-one changes but primarily focusing on a mix of many-to-one
and many-to-many changes.

For each task, participants have a maximum of 30 minutes to com-
plete the migration. Before starting the plugin-assisted migration,
we verbally instruct the participants on how to use the plugin and
show them the README file for MigMate. The exact project and
task instructions used are available at https://github.com/sanadlab/
MigMate-Study-Repo.

5.1.2 Survey. After completing both tasks, we ask participants
to fill in a short survey that contains Likert-type questions on
perceived usability of MigMate based on the System Usability Scale
(SUS) [3], a widely used questionnaire that measures perceived
usability. The survey also includes optional feedback questions to
gather qualitative data regarding the participants’ experience with
MigMate.

5.1.3 Participants Block Assignment. We conduct our study as a
within-subjects design [8], where all participants are exposed to
both migration tasks. We balance the participants across different
setups (experimental blocks) of the study to mitigate learning ef-
fects, especially since the same project is used across both tasks.
Half of the participants perform the manual migration first, while
the other half begin with the plugin-assisted migration. We further
divide those groups into those that start with Pair A and those that
start with Pair B, for a total of four groups. Table 1 shows the four
different experimental block configurations.

5.1.4 Collected data. We collect the time taken for each task, as
well as telemetry data to identify usage patterns. Note that we do

Conference’17, July 2017, Washington, DC, USA

Table 2: Average Time to Complete Migration (min)

Lib Pair Manual Plugin
(A) requests — httpx 25:23 10:42
(B) tablib — pandas 27:51 10:48

not measure the correctness of the migrations as our main focus is
on understanding the participants’ experience in using the plugin.

5.2 Participant Recruitment

We recruited nine participants for the study, but one withdrew be-
fore completing the session. The remaining eight participants con-
sisted of two first-year students, a third-year student, four fourth-
year students, and one recent alumnus. All participants self-rated
their Python skills and familiarity with VS Code on a 5-point Likert
scale, and we included only those who indicated at least a 3 in both
areas.

5.3 Results

Table 2 shows the average time taken to solve each task manually
versus using MigMate. We find that across both tasks, the manual
migration took more time to complete than the assisted one. We
can see that the plugin saves 60% of the time required on average.

Based on the telemetry data, we find that the Hover Trigger was
the most frequently used method for initiating a library migration
by participants (62.5%), followed by the Context Menu (33.3%). This
matches our expectations, as the hover trigger reduces friction by
eliminating the step of selecting a source library for the current
migration. The Command Palette was used only once, suggesting it
may be less intuitive for users. We find that four participants used
the migration-level changes, three used the file-level changes, while
one participant completed the migration by exclusively making in-
dividual changes. This result does not indicate the exact reasoning
behind these choices, which could be due to confidence or simply
personal preference. We need further investigation to better under-
stand if a particular granularity level has advantages/preferences.

Based on the questionnaire, we find that MigMate’s mean SUS
usability score is 80.9 on the 100-point scale, placing it around
the 90th percentile and earning an A-grade [14]. Six of the partici-
pants also left comments and suggestions in the optional feedback.
One recurring request was to implement library recommendations
during the target library selection when initiating a migration. An-
other common point was an appreciation for the preview’s clarity,
with a few participants suggesting that it should also indicate the
confidence in each suggested change.

5.4 Threats to Validity & Future Work

Our current evaluation is a small-scale preliminary evaluation of
MigMate. Specifically, our sample size of 8 participants is rather
small and the four experiment blocks do not all have the same
number of participants. Specifically, Group B1 has three members
while Group A2 has only one due to random assignment and some
participants canceling their sessions. Another threat is that the
participants had limited exposure to MigMate’s features. Since they
only used the plugin to complete one migration task, they did

https://github.com/sanadlab/MigMate-Study-Repo
https://github.com/sanadlab/MigMate-Study-Repo

Conference’17, July 2017, Washington, DC, USA

not need to interact with the configuration options, and most of
the participants never experienced test failures during an assisted
migration. While we currently have initial positive results about
MigMate’s usability, future larger scale evaluations should include
migration tasks that are known to result in failing tests and to
allow participants to experiment with the configuration options.
Such an extended evaluation can also helps us determine useful
features to add to MigMate, as well as how to improve the existing
functionality.

6 Conclusion

This paper presented MigMate, a VS Code extension that inte-
grates MigrateLib [11], an LLM-based migration tool, to support
semi-automated Python library migration. The system combines
automated code transformation with interactive review of LLM-
generated code changes, allowing developers to selectively apply
suggested changes directly in their workspace. By embedding this
process into the IDE, MigMate streamlines migration while main-
taining developer control over code modifications. Our preliminary
evaluation suggests that developers appreciated having a preview
of the exact changes that will happen. More broadly, this work
demonstrates how automation can be applied in ways that preserve
transparency and confidence in Al-assisted tools.

Acknowledgments

We would like to thank Ajay Kumar Jha for providing feedback in
the early stages of this study.

References

[1] Rabe Abdalkareem. 2017. Reasons and drawbacks of using trivial npm pack-
ages: the developers’ perspective. In Proceedings of the 2017 11th Joint Meet-
ing on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE
2017). Association for Computing Machinery, New York, NY, USA, 1062-1064.
doi:10.1145/3106237.3121278

[2] Aylton Almeida, Laerte Xavier, and Marco Tulio Valente. 2024. Automatic Library
Migration Using Large Language Models: First Results. In Proceedings of the 18th
ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement (Barcelona, Spain) (ESEM °24). Association for Computing Machinery,
New York, NY, USA, 427-433. doi:10.1145/3674805.3690746

[3] John Brooke et al. 1996. SUS - A quick and dirty usability scale. In Usability
Evaluation in Industry. London: Taylor and Francis, 189-194.

[4] Dustin Campbell and Mark Miller. 2008. Designing refactoring tools for develop-
ers. In Proceedings of the 2nd Workshop on Refactoring Tools (Nashville, Tennessee)
(WRT °08). Association for Computing Machinery, New York, NY, USA, Article 9,
2 pages. doi:10.1145/1636642.1636651

[5] Tom Christie and contributors. 2024. HTTPX: A next-generation HTTP client for
Python. https://www.python-httpx.org/

[6] Jonathan Cordeiro, Shayan Noei, and Ying Zou. 2025. LLM-Driven Code Refac-

toring: Opportunities and Limitations. In Proceedings of the 47th International

Conference on Software Engineering (Ottawa, Ontario, Canada) (ICSE ’25). IEEE

Press.

Rehab El-Hajj and Sarah Nadi. 2020. LibComp: an Intelli] plugin for comparing

Java libraries. In Proceedings of the 28th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering

(Virtual Event, USA) (ESEC/FSE 2020). Association for Computing Machinery,

New York, NY, USA, 1591-1595. doi:10.1145/3368089.3417922

[8] Anthony G. Greenwald. 1976. Within-subjects designs: To use or not to use?

Psychological Bulletin 83, 2 (1976), 314-320. https://doi.org/10.1037/0033-2909.83.

2.314

Hao He, Yulin Xu, Xiao Cheng, Guangtai Liang, and Minghui Zhou. 2021. Mi-

grationAdvisor: recommending library migrations from large-scale open-source

data. In Proceedings of the 43rd International Conference on Software Engineer-

ing: Companion Proceedings (Virtual Event, Spain) (ICSE °21). IEEE Press, 9-12.

d0i:10.1109/ICSE-Companion52605.2021.00023

Mohayeminul Islam, Ajay Kumar Jha, May Mahmoud, Ildar Akhmetov, and

Sarah Nadi. 2025. An Empirical Study of Python Library Migration Using Large

=

=

[10]

[11

[12

[13

(14

[15

[16
(17

(18

[19

[20

[21

]

]

]

]

]

Matthias Kebede, May Mahmoud, Mohayeminul Islam, and Sarah Nadi

Language Models. In Proceedings of the 40th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2025) (Seoul, Republic of Korea) (ASE
°25). Association for Computing Machinery, New York, NY, USA.

Mohayeminul Islam, Ajay Kumar Jha, May Mahmoud, and Sarah Nadi.
2025. PyMigTool: a tool for end-to-end Python library migration.
arXiv:2510.08810 [cs.SE] https://arxiv.org/abs/2510.08810

Mohayeminul Islam, Ajay Kumar Jha, Sarah Nadi, and Ildar Akhmetov. 2023.
PyMigBench: A Benchmark for Python Library Migration. In 2023 IEEE/ACM
20th International Conference on Mining Software Repositories (MSR). 511-515.
doi:10.1109/MSR59073.2023.00075

Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2018. Do developers update their library dependencies? Empirical Softw.
Engg. 23, 1 (Feb. 2018), 384-417. doi:10.1007/s10664-017-9521-5

James R. Lewis and Jeff Sauro. 2018. Item benchmarks for the system usability
scale. J. Usability Studies 13, 3 (May 2018), 158-167.

Xinhong Liu and Reid Holmes. 2020. Exploring Developer Preferences for Visu-
alizing External Information Within Source Code Editors. In 2020 Working Con-
ference on Software Visualization (VISSOFT). 27-37. doi:10.1109/VISSOFT51673.
2020.00008

Microsoft. 2025. Visual Studio Code - Activation Events. https://code.visualstudio.
com/api/references/activation-events

Microsoft. 2025. Visual Studio Code - UX Guidelines. https://code.visualstudio.
com/api/ux-guidelines/overview

Ansong Ni, Daniel Ramos, Aidan Z.H. Yang, Inés Lynce, Vasco Manquinho,
Ruben Martins, and Claire Le Goues. 2021. SOAR: A Synthesis Approach for
Data Science API Refactoring. In Proceedings of the 43rd International Conference
on Software Engineering (Madrid, Spain) (ICSE "21). IEEE Press, 112-124. doi:10.
1109/ICSE43902.2021.00023

Kenneth Reitz and contributors. 2025. Requests: HTTP for Humans.
//requests.readthedocs.io

Cédric Teyton, Jean-Rémy Falleri, and Xavier Blanc. 2013. Automatic discovery
of function mappings between similar libraries. In 2013 20th Working Conference
on Reverse Engineering (WCRE). 192-201. doi:10.1109/WCRE.2013.6671294
Zejun Zhang, Minxue Pan, Tian Zhang, Xinyu Zhou, and Xuandong Li. 2020.
Deep-Diving into Documentation to Develop Improved Java-to-Swift API Map-
ping. In Proceedings of the 28th International Conference on Program Comprehen-
sion (Seoul, Republic of Korea) (ICPC "20). Association for Computing Machinery,
New York, NY, USA, 106-116. doi:10.1145/3387904.3389282

https:

https://doi.org/10.1145/3106237.3121278
https://doi.org/10.1145/3674805.3690746
https://doi.org/10.1145/1636642.1636651
https://www.python-httpx.org/
https://doi.org/10.1145/3368089.3417922
https://doi.org/10.1037/0033-2909.83.2.314
https://doi.org/10.1037/0033-2909.83.2.314
https://doi.org/10.1109/ICSE-Companion52605.2021.00023
https://arxiv.org/abs/2510.08810
https://arxiv.org/abs/2510.08810
https://doi.org/10.1109/MSR59073.2023.00075
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1109/VISSOFT51673.2020.00008
https://doi.org/10.1109/VISSOFT51673.2020.00008
https://code.visualstudio.com/api/references/activation-events
https://code.visualstudio.com/api/references/activation-events
https://code.visualstudio.com/api/ux-guidelines/overview
https://code.visualstudio.com/api/ux-guidelines/overview
https://doi.org/10.1109/ICSE43902.2021.00023
https://doi.org/10.1109/ICSE43902.2021.00023
https://requests.readthedocs.io
https://requests.readthedocs.io
https://doi.org/10.1109/WCRE.2013.6671294
https://doi.org/10.1145/3387904.3389282

	Abstract
	1 Introduction
	2 Background and Related Work
	3 MigMate Design
	4 MigMate Workflow
	4.1 Initiating Migration
	4.2 Test Results
	4.3 Migration Preview
	4.4 Configuration

	5 Preliminary Evaluation
	5.1 Study Design
	5.2 Participant Recruitment
	5.3 Results
	5.4 Threats to Validity & Future Work

	6 Conclusion
	Acknowledgments
	References

