An Automated Methodology for Generating Labeled Datasets of
Semantic Errors in Code

Mahmoud Kassem
mahmoud.kassem@nyu.edu
New York University Abu Dhabi
Abu Dhabi, United Arab Emirates

Abstract

Code generated by language models frequently contains subtle se-
mantic errors that are difficult to detect with conventional static
analysis and machine learning classifiers. Studying these errors re-
quires specialized datasets that are laborious to create manually. To
address this, we present an automated methodology for generating
a labeled dataset of semantic errors based on an established taxon-
omy. Our approach uses GPT-4.1 to systematically introduce single,
isolated semantic bugs into correct code from the HumanEval and
BigCodeBench benchmarks. We also present a resulting artifact: a
labeled dataset of Python code with semantic errors, designed to
facilitate classification research.

CCS Concepts

« Software and its engineering — Software testing and debug-
ging; Mutation testing; Software defect analysis; « Computing
methodologies — Natural language processing.

Keywords

Automated Software Engineering, Large Language Models, Seman-
tic Errors, Fault Injection, Synthetic Datasets, Mutation Analysis,
Prompt Engineering

ACM Reference Format:

Mahmoud Kassem, Francisco Ribeiro, and Sarah Nadi. 2026. An Automated
Methodology for Generating Labeled Datasets of Semantic Errors in Code. In
3rd International Workshop on Large Language Models For Code (LLM4Code
’26), April 12—18, 2026, Rio de Janeiro, Brazil. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3786181.3788730

1 Introduction

Datasets of correct and incorrect code pairs [28, 30, 33, 65] are
essential for developing and evaluating many software engineering
tools. This data drives the creation of automated program repair
(APR) tools [40], fault localization (FL) techniques [61], and code
intelligence systems [5].

A common method for creating these datasets is by mining real
developer fixes from software repositories [29, 31]. Undoubtedly,
this method has created notable datasets that helped advance the
state of the art in the above research areas. However, mining historic
data from version control systems has some inherent problems.
First, the resulting data is often noisy [21, 27, 63] due to tangled

This work is licensed under a Creative Commons Attribution 4.0 International License.
LLM4Code °26, Rio de Janeiro, Brazil

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2412-1/2026/04

https://doi.org/10.1145/3786181.3788730

Francisco Ribeiro
francisco.ribeiro@nyu.edu
New York University Abu Dhabi
Abu Dhabi, United Arab Emirates

Sarah Nadi

sarah.nadi@nyu.edu
New York University Abu Dhabi
Abu Dhabi, United Arab Emirates

Listing 1: Noisy fix: identified by fixCommitSHA1 aa90e04

- if(submittedNode == null || submittedNode.get("values") != null
) {

+ if(submittedNode == null || submittedNode.get("values") == null
) {

- variables.put(field.getId(), dateValue);
+ variables.put(field.getId(), dateValue.toString("yyyy-M-d"));

changes [22]. A bug-fix commit frequently contains more than only
the bug fix, as it is often bundled with additional unrelated changes,
like refactoring or logging. As an example, consider the bug-fix
pair shown in Listing 1 taken from the ManySStuBs4} dataset [31,
32], where the bug fix (changing a condition to check for null) is
combined with an unrelated change in functionality (converting a
date value to a string). The presence of such unrelated modifications
means that models trained on this data may learn to associate
irrelevant patterns with specific bug types.

Second, defect artifacts are hard to reproduce and keep exe-
cutable [66]. Moreover, many of these pipelines are language- and
toolchain-specific, which makes them hard to extend [27, 59]. As
such, adding new examples, bug types, or languages is often im-
practical. Ultimately, this forces researchers to work with data that
is often limited or static.

Recently, large language models (LLMs) have been used as pow-
erful tools for code generation [10]. By leveraging the capability
of many of these models to follow natural language instructions,
researchers have recently leveraged LLMs to inject targeted errors
in source code to improve mutation testing [53]. Inspired by this
idea, we argue that such targeted mutations offer a more flexible ap-
proach to creating cleanly labeled single-fault executable datasets.

In this work, we propose an automated methodology to gener-
ate a labeled dataset of semantic errors by prompting an LLM to
introduce specific bugs into correct code. Such an approach has the
following advantages:

(1) It eliminates the noise of tangled changes: By design, the
only difference between the correct and incorrect code is the
single and intended bug.

(2) It is flexible: Our methodology is lightweight and automated.
It can be re-run at any time to generate new examples, target
different bug types, or support new languages without a
complex mining and code analysis infrastructure.

Our primary contributions are:

(1) An Automated Methodology for Dataset Generation:
We introduce a novel foundational technique that uses an
LLM (in our case: GPT-4.1) to systematically inject single,
isolated semantic errors into correct reference solutions.

https://doi.org/10.1145/3786181.3788730
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3786181.3788730

LLM4Code ’26, April 12-18, 2026, Rio de Janeiro, Brazil

(2) A Labeled Dataset for Semantic Errors: The primary
output of our methodology is a new Python dataset of 1,217
labeled samples spanning six semantic error categories.!
Each sample consists of a correct code solution paired with
an incorrect, LLM-generated variant, labeled with a specific
semantic error type.

While our current taxonomy focuses on six core error types, this
work serves as a proof-of-concept for the viability of LLM-driven
bug injection, establishing a baseline for future expansion into more
complex defect categories.

Listing 2: Simplified structure of the LLM mutation prompt.

Kassem et al.

Table 1: Semantic error types considered by our dataset.

Error Type Example of Incorrect

Code Transformation

Introduce a single, natural-looking logical error into the given
Python function.

**Task Description:xx {task_desc}
*xCorrect Code:*x {correct_code}

**Error Type to Introduce:xx {error_type}
*xDefinition:*x {error_type_description}
Example: {error_type_example}

**SPECIFIC GUIDANCE FOR THIS ERROR TYPE:*x*
<Dos and don'ts for this error type>

** CRITICAL REQUIREMENTS (Summarized) :#*%
<General rules for subtlety, code integrity, and label fidelity>

[... The full prompt continues with more detailed examples of good
/bad errors, specific rules to prevent applying the wrong
change for a given error type, and a final validation
checklist to guide the model's self-correction process ...]

*xQutput Format:*xx
Return your response as a JSON object with the keys: "mutated_code
" and "explanation".

Overall, we argue that leveraging the code-generation capabili-
ties of LLMs is an effective way to overcome the lack of available
datasets. Our methodology allows us to rapidly generate large
amounts of labeled data, overcoming the scalability barrier of tradi-
tional mining.

2 Methodology

This section details our methodology for the automated generation
of a labeled dataset of semantic errors. Our approach is centered
on a mutational strategy where we use an LLM to inject specific
errors into correct code. We describe the source of our data, the
prompt engineering techniques used to control the LLM, and the
validation process to ensure the quality of the generated dataset.

2.1 Data Source

The foundation of our dataset are the two the well-established
datasets HumanEval benchmark [10] and the hard subset of the
BigCodeBench [68] benchmark. HumanEval provides a collection of
164 function-level programming problems, each accompanied by a
natural language task description, a canonical correct solution in
Python, and a test suite. Likewise, the hard subset of BigCodeBench
provides 296 challenging programming tasks, each supplying com-
plex natural-language instructions and a rigorous suite of test cases

10ur dataset and supplemental materials are available at: https://github.com/sanadlab/
auto-sem-gen

incorrect_condition if score > 50: -> if score >=

50:

of f_by_one

for i in range(1, n): -> for i

in range(n):

incorrect_variable_name X, y =5, 10; return x -> ...;

return y

constant_value_error
incorrect_arthematic_operator

TIMEOUT = 30 -> TIMEOUT = 6@

result = x +y -> result = x -

y

incorrect_function_arguments plot(x_data, y_data)-> plot(

y_data, x_data)

designed to evaluate a model’s ability to utilize diverse function
calls and perform compositional reasoning.

Both of these benchmarks serve as ideal sources, as they provide
the necessary components — the task to incorporate in our prompt,
the ground-truth code, and the means for verification — to generate
and validate our dataset.

2.2 Mutational Approach and Prompt
Engineering

Our data generation process adapts concepts from LLM-driven
mutation testing, such as the LLMorpheus [53] tool, which uses
models to inject faults for evaluating test suites. While LLMor-
pheus prompts for general buggy replacements at placeholder loca-
tions, our approach is specifically tailored for dataset generation by
prompting GPT-4.1 to rewrite the function, deliberately introducing
a single semantic error from a predefined taxonomy, which is a sub-
set from the classification of LLM-generated code errors by Wang
et al. [58]. Their taxonomy classifies errors along two dimensions:
13 semantic characteristics (describing the error’s root cause) and
14 syntactic characteristics (describing the error’s location). For
this work, we selected a subset of six common semantic error types
from their 13 semantic categories, which are well-suited for our
mutational approach and listed in Table 1. The prompt template,
summarized in Listing 2, explicitly instructs the model to inject a
specific fault type (e.g., an off-by-one error or an incorrect logical
operator) while preserving the syntactic correctness and the overall
structure of the original code. This controlled injection of a single
fault per solution is a key feature of our methodology, ensuring
the resulting dataset provides unambiguous examples of each error

type.

2.3 Validation

To ensure the integrity of the generated dataset, we employ a semi-
automated validation process, which is illustrated in the final stages
of the pipeline in Figure 1. This process consists of two key stages:
automated testing and manual verification.

First, in the automated stage, each LLM-generated code variant is
executed against the corresponding test suite (from HumanEval or

https://github.com/sanadlab/auto-sem-gen
https://github.com/sanadlab/auto-sem-gen

An Automated Methodology for Generating Labeled Datasets of Semantic Errors in Code

BigCodeBench). This step is crucial for filtering out equivalent mu-
tants, variants that, despite syntactic changes, still produce correct
outputs and pass all tests. Only variants that fail at least one test
case are retained for the final dataset. We emphasize that the manual
verification described in this section was conducted solely to vali-
date the effectiveness of our methodology and establish a baseline
of confidence. The generation technique itself is fully automated
and requires no human intervention to produce new datasets.

Second, to verify the quality of the injected errors, we conducted
a manual analysis on random samples from both datasets. This
manual check verified two critical criteria: (1) that the injected bug
precisely matched the requested semantic error type, and (2) that no
other confounding, unintended errors were introduced. We adopted
a consistent statistical standard for our sampling, aiming for a 90%
confidence level with a 5% margin of error. For the HumanEval
dataset, our manual analysis of 200 random samples out of 745
total entries yielded an accuracy of 90%. For the BigCodeBench
Hard dataset, from its total population of 472 generated errors, this
standard required a sample size of 173. Manual analysis of these
173 samples revealed an accuracy of 75.7%. This lower accuracy
on BigCodeBench Hard, compared to HumanEval, is attributable
to its higher task complexity. We observed that as the solution
logic becomes more complex and less straightforward, it is more
challenging for the LLM to inject a single, isolated semantic error
without also introducing other confounding bugs.

This two-stage validation process gives us confidence in the
overall label quality and provides a clear accuracy metric for each
dataset.

3 The Generated Dataset

The primary artifact of our methodology is a labeled dataset of
semantic errors. Listings 3 and 4 show a representative sample
from HumanEval and the corresponding mutant generated using
our methodology, while Listings 5 and 6 show a sample from Big-
CodeBench with its corresponding generated mutant.

Listing 3: Correct solution for HumanEval/8 (sum_product).

def sum_product(numbers:
-> Tuplelint,
sum_value = @
prod_value = 1
for n in numbers:
sum_value += n
prod_value *= n
return sum_value, prod_value

List[int])
int]:

Listing 4: Incorrect solution for HumanEval/8, labeled as
"Incorrect Arithmetic Operation".

def sum_product(numbers:
-> Tuplelint,
sum_value = @
prod_value = 1
for n in numbers:
sum_value += n
prod_value += n # Bug: should be prod_value *= n
return sum_value, prod_value

List[int])
int]:

10
11
12

LLM4Code 26, April 12-18, 2026, Rio de Janeiro, Brazil

LLM Prompt

Target Error Type
(e.g., Off-by-One)

Generated Code

Validation

Execute Against

Test Suite

Passing Code (Equiv- Failing Code (Valid
alent Mutant) Labeled Error)

v
Manual Valida-
tion (via Sampling)

Figure 1: Pipeline for generating and validating a dataset
sample. A formatted prompt is sent to the LLM. The output
is tested to filter equivalent mutants (passing). The remaining
valid errors (failing) are collected, and their label accuracy is
then verified through manual sampling.

Listing 5: Correct solution for BigCodeBench/952 (task_func).

def task_func(task_list,
employees,
assignment_data = []
for _ in range(n_tasks):
task_name = random.choice(
task_list).replace(" ", "_")
employee = random.choice(employees)
assignment_data.append(
[task_name, employee, due_date])
return pd.DataFrame(assignment_data,
columns=["Task Name", "Assigned To",
"Due Date"])

n_tasks,
seed=None):

Listing 6: Incorrect solution for BigCodeBench/952, labeled
as "Constant Value Error".

def task_func(task_list,
employees,
assignment_data = []
for _ in range(n_tasks):
task_name = random.choice(
task_list).replace(" ", "-") # Bug:
employee = random.choice(employees)
assignment_data.append(
[task_name, employee, due_datel])
return pd.DataFrame(assignment_data,
columns=["Task Name", "Assigned To",
"Due Date"])

n_tasks,
seed=None):

should be "_"

This section describes the structure and characteristics of this
dataset. For accessibility and ease of use, the dataset is stored in
JSON Lines format.

LLM4Code ’26, April 12-18, 2026, Rio de Janeiro, Brazil

3.1 Dataset Schema

Each line in the dataset corresponds to an entry and is a self-
contained JSON object representing a single programming task
and its corresponding faulty code variant. Each JSON object con-
tains the following key-value pairs:

e task_description: A string containing the complete nat-
ural language description of the programming task, as pro-
vided by the original HumanEval or BigCodeBench bench-
marks.

e correct_solution: A string containing the canonical, cor-
rect Python code for the task from the reference benchmarks,
HumanEval or BigCodeBench.

e incorrect_solution: A string containing the LLM-generated
Python code, which includes a single, isolated semantic error.

e error_type: A string label specifying the class of the se-
mantic error introduced in the incorrect_solution. Table
1 lists the possible error types.

We elaborate on the research opportunities enabled by this
schema in Section 4.2.

3.2 Dataset Statistics

Our final dataset contains 1,217 samples, composed of 745 generated
from the HumanEval benchmark and 472 from the BigCodeBench
Hard benchmark. Table 2 provides a detailed distribution of these
samples by their injected error type.

Table 2: Distribution of Error Types in the Dataset.

Error Type Percentage Count
Constant Value Error 15.9% 193
Incorrect Arithmetic Operation 18.4% 224
Incorrect Condition 11.5% 140
Incorrect Function Arguments 16.8% 205
Incorrect Variable Name 18.5% 225
Off-by-One Error 18.9% 230
Total 100.0% 1,217

The distribution of error types is relatively balanced, making the
dataset suitable for training and evaluating multi-class classification
models. We elaborate on this in Section 4.1.

4 Applications and Future Work

Our work in generating this dataset of fine-grained semantic errors
is not an end in itself, but rather a foundation for further research
and development. In this section, we first explore the immediate
potential applications of the dataset as a new benchmark for code
intelligence tools. We then outline several promising directions for
future work, focusing on how our bug generation methodology can
be extended and refined.

4.1 Potential Applications

As we noted in Section 3, the structure of the dataset artifact en-
ables broader research into the nature of programming errors. By

Kassem et al.

including the natural language task description, our dataset facili-
tates research into the root causes of semantic bugs. For example,
researchers may explore:

e Fine-Grained Error Classification: The dataset’s struc-
ture naturally lends itself to a classification problem, making
it a fitting resource for training and evaluating supervised
models (from simple classifiers to more complex neural ar-
chitectures) to automatically classify the specific type of
semantic error in a code snippet. This inherent fit suggests
direct applications in IDEs and automated tutoring systems,
providing developers and learners with more specific feed-
back beyond a simple "wrong answer".

o Error Correlations: Whether certain requirement patterns
(e.g., boundary conditions) are more likely to result in specific
bugs (e.g., off-by-one errors).

e Program Repair: Using the paired correct/incorrect solu-
tions and error labels to develop targeted Automated Pro-
gram Repair (APR) approaches.

e Failure Analysis: Studying the generated errors to better
understand the scenarios more prone to failure in LLMs,
informing the development of more reliable code models.

4.2 Future Work

Our work also establishes a foundation for several promising re-
search directions where the methodology itself can be extended
and refined. Future work could involve:

¢ Expanding Scope and Generalizability: Applying our
mutational approach to other programming languages (e.g.,
Java, C++) and different source code benchmarks. This would
test the generalizability of our technique and produce a more
diverse collection of datasets. For instance, recent work like
LLMorpheus [53] has also explored mutational strategies
for languages such as JavaScript/TypeScript, albeit with a
different goal (mutation testing), which highlights the broad
utility of such methods.

Enriching the Error Taxonomy: Expanding the taxonomy
to include more complex semantic error types. This includes
critical but hard-to-generate bugs such as concurrency issues
(e.g., data races, deadlocks) [38] and incorrect API usage (e.g.,
violating call order, misusing parameters) [64], which remain
significant challenges in software engineering.

Varying the Mutator LLM: Experimenting with different
foundational models (e.g., open-source models like Llama[55]
or Mixtral[26]) to perform the bug injection. This is impor-
tant for assessing how a model’s underlying architecture
and training data influence the diversity and realism of the
generated bugs, as well as for exploring the feasibility of
using more accessible, non-proprietary models for this task.
Improving Validation: To address the lower accuracy ob-
served in complex tasks (like BigCodeBench), future work
could use iterative prompting or LLM-as-a-judge [16] to fil-
ter out unclear examples before manual review. Some code
specific LLM-as-a-judge methods exist such as CodeJudge
that is specifically designed for evaluating semantic code
[54] or ICE-Score [67] which mainly overcomes the problem

An Automated Methodology for Generating Labeled Datasets of Semantic Errors in Code

of lacking test-suites, making the methodology applicable
for code datasets with no provided test suites.

5 Threats to Validity

We identify several potential threats to the validity of our method-
ology and the resulting dataset.

Internal Validity: The primary threat to internal validity is the
fidelity of the semantic error labels. Although our methodology
is designed to generate specific error types, the stochastic nature
of LLMs could lead to mislabeled examples (e.g., the model intro-
ducing a different bug than instructed). We mitigate this by using
highly constrained prompts and performing a manual validation
on a random sample, which confirmed 90% and 75.7% labeling accu-
racies, as described in Section 2.3. However, a small degree of label
noise is an inherent limitation of this automated approach. Addi-
tionally, since all mutations were generated using a single model
(GPT-4.1), there is a potential risk of model bias, where the dataset
may over-represent specific error patterns favored by this model’s
training distribution or tend to produce repetitive variations of the
same error type. Future work should explore ensuring distribution
diversity by, for example, employing a wider range of LLMs for
mutation.

External Validity: Our findings may have limited generalizabil-
ity since our dataset is based on a single programming language
(Python) and two data sources (HumanEval and BigCodeBench
Hard). The distribution and nature of semantic errors might dif-
fer in other languages or in larger and more complex real-world
software. Nevertheless, by using a well-established benchmark, our
work provides a reproducible baseline that enables the community
to extend this methodology to other contexts.

Construct Validity: The validity of our conclusions depends
on our error taxonomy. While based on prior work [57], this tax-
onomy is a representative subset and may not be exhaustive. We
acknowledge that it currently excludes complex categories such as
concurrency issues, state-management defects, or security vulnera-
bilities. We position this work as a foundational proof-of-concept
for validating the generative methodology; however, the lower val-
idation accuracy observed on the BigCodeBench benchmark (75.7%)
compared to HumanEval (90%) highlights the trade-off between
task complexity and the difficulty of injecting isolated, precision
errors without unintended side effects.

6 Related Work

Our work introduces a methodology for the automated generation
of labeled datasets and is best understood in the context of two
areas: (1) existing approaches for collecting bug data, and (2) the
emerging study of errors in LLM-generated code.

6.1 Approaches to Bug Data Collection

The predominant method for creating bug datasets is to mine the
version control history of open-source projects. Large-scale datasets
like ManySStuBs4] [31] and TSSB-3M [47] have successfully ap-
plied this to collect millions of single-statement bug fixes. While
these resources share our focus on fine-grained edits, they do not
guarantee that a buggy version only represents a single behavioral
fault. This ambiguity, which our introductory example in Listing 1

LLM4Code 26, April 12-18, 2026, Rio de Janeiro, Brazil

shows, introduces noise and hinders automated analysis. In con-
trast, our methodology takes a different route: it programmatically
injects exactly one isolated semantic error into a known-correct so-
lution and validates it via tests. This controlled, low-noise approach
provides the precision needed to build tools that target the core of
the error, rather than being misled by unrelated or confounding
aspects that are tangled with a bug.

Other research recognizes the noise in mined commits and fo-
cuses on improving dataset precision. Techniques like Flexeme [43]
and LLM-based detectors [42] untangle commits that mix multi-
ple changes. BugMiner [49] isolates bug-inducing changes. These
approaches attempt to clean up the noise inherent in mined data,
while our generation method sidesteps this problem by producing
single-fault instances by design.

Other datasets also aim for high confidence in the validity of
their bugs. While some achieve this using test execution to validate
bugs, others rely on different artifacts. For example, ReDef [41] uses
reverted commits and PreciseBugCollector [20] uses bug-tracker
information. While this improves label reliability, their focus differs
from ours. They typically operate at a coarser granularity (classify-
ing code as simply "defective" or "clean") and do not enforce our
strict requirement for a single, isolated semantic error per sample.

Some approaches have learned mutation operators from real
bug-fixes to create more realistic faults [56]. Recent work such as
LLMorpheus [53] has also explored using LLMs for mutation testing
in JavaScript and TypeScript. While our approach shares the under-
lying concept of LLM-driven mutation, it differs fundamentally in
scope and application. LLMorpheus generates mutants to evaluate
the quality of existing test suites, whereas our methodology targets
the generation of a labeled dataset for training models. Additionally,
our work currently focuses on Python, while LLMorpheus focuses
on JS/TS. Similarly, mined datasets like ManySStuBs4] [31] focus
on Java. However, unlike tool-specific static analysis, our prompt-
driven methodology is inherently language-agnostic. This allows
our approach to be adapted to other languages with relatively low
effort. Our methodology can be seen as a specialized form of mu-
tation generation, but our goal is not to evaluate an existing test
suite. Instead, we use a constrained process to create a clean, la-
beled dataset. As studies on distribution shift have shown [19], such
controlled synthetic datasets are valuable and complement datasets
mined from real-world bugs.

6.2 Datasets for Analyzing LLM-Generated Code

In order to study the reliability of LLM-generated code, some studies
analyze LLM outputs to create taxonomies of common errors [11, 14,
35, 51, 57]. These taxonomies show that LLM errors have patterns,
a finding that is the basis for our work. However, these studies
only categorize errors manually. They do not offer an automated
way to generate a labeled dataset. Our methodology fills this gap
by automating the creation of a structured dataset from an error
taxonomy.

The buggy-HumanEval dataset [13] creates buggy code prefixes
by flipping operators in correct solutions. Their goal is to test how
LLMs complete code when the provided prefix already contains a
bug. In contrast, our methodology generates a complete but incor-
rect function, not just a prefix, and provides an explicit label for

LLM4Code ’26, April 12-18, 2026, Rio de Janeiro, Brazil

the error type. Our goal is to create a labeled dataset, not to test
code completion. Other benchmarks also use bug injection to eval-
uate LLM debugging. For instance, DebugBench [52] uses GPT-4
to implant diverse bugs, while MdEval [37] uses custom tools for
multilingual faults. Their goal is to test general debugging. Our
methodology is different: we use highly constrained prompts to in-
ject a single, specific error type. This creates a dataset for classifying
error types, not for evaluating debugging abilities.

7 Conclusion

This work makes two key contributions to the study of semantic er-
rors in code. First, we introduced an automated and flexible method-
ology that leverages an LLM to systematically inject single, isolated
semantic errors into correct code, guided by a predefined taxonomy.
Second, using this methodology, we produced and validated a new,
publicly available dataset of 1,217 labeled Python code snippets.
This artifact, derived from the HumanEval and BigCodeBench bench-
marks, spans six common semantic error categories and provides a
clean, task-aligned resource for the research community.

The primary practical implication of our work is its ability to
overcome the key limitations of traditional bug-data mining. By
generating data by design, our approach avoids the "tangled change"
problem, ensuring that each sample contains only the intended, la-
beled fault. This provides the community with a reliable benchmark
for developing and evaluating a new generation of code intelligence
tools. As discussed in Section 4.1, this dataset can directly facilitate
research into fine-grained error classification, targeted program re-
pair, and the analysis of LLM failure modes, enabling tools that offer
more specific, actionable feedback than a simple pass/fail verdict.

Ultimately, this work establishes a new foundation for creating
high-quality, labeled data for code analysis. Future efforts can ex-
tend this methodology to other programming languages, richer
error taxonomies, and different code benchmarks, further acceler-
ating research into automated debugging and code reliability.

References

[1] Altaf Allah Abbassi, Leuson Da Silva, Amin Nikanjam, and Foutse Khomh. 2025.
Unveiling Inefficiencies in LLM-Generated Code: Toward a Comprehensive Tax-
onomy. arXiv:2503.06327 [cs.SE] doi:10.48550/arXiv.2503.06327

[2] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. 2001. On the
Surprising Behavior of Distance Metrics in High Dimensional Space. In Database
Theory — ICDT 2001. Springer-Verlag Berlin Heidelberg, 420-434.

[3] E. Akimova, I. Klyuchnikov, N. Sorokin, et al. 2021. A Survey on Software Defect
Prediction Using Deep Learning. Mathematics 9, 24 (2021), 3281.

[4] Elena N. Akimova, Alexander Yu. Bersenev, Artem A. Deikov, Konstantin S.

Kobylkin, Anton V. Konygin, and Ilya P. Mezentsev. 2021. PyTraceBugs: A

Large Python Code Dataset for Supervised Machine Learning in Software Defect

Prediction. In 2021 28th Asia-Pacific Software Engineering Conference (APSEC).

IEEE, Taipei, Taiwan, 113-123. doi:10.1109/APSEC53868.2021.00022

Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. 2018.

A Survey of Machine Learning for Big Code and Naturalness. ACM Comput. Surv.

51, 4, Article 81 (July 2018), 37 pages. doi:10.1145/3212695

[6] M.EL Amin, M.M.H. Nibir, M.M. Rahman, and S. Sharmin. 2023. Multi-label Code
Error Classification Using CodeT5 and ML-KNN. In 2023 5th International Confer-
ence on Sustainable Technologies for Industry 5.0 (STI). IEEE, Dhaka, Bangladesh,
1-6. doi:10.1109/STI159943.2023.10255392

[7] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk

Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,

and Charles Sutton. 2021. Program Synthesis with Large Language Models.

arXiv:2108.07732 [cs.PL] doi:10.48550/arXiv.2108.07732

Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation

Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis

and Machine Intelligence 35, 8 (2013), 1798-1828. d0i:10.1109/TPAMI.2013.50

(5

=

=

[o

[10

[11

[12

=
&

[14

[16

(17

(18

[20

[21

[22

[24

[25

[26

[27

]

]

]

]

Kassem et al.

Satish Chandra and Maxim Tabachnyk. 2024. Al in Software Engi-
neering at Google: Progress and the Path Ahead. Google Research
Blog. https://research.google/blog/ai- in-software-engineering-at-google-
progress-and-the-path-ahead/

Mark Chen, Jerry Tworek, Heewoo Jun, et al. 2021. Evaluating Large Language
Models Trained on Code. arXiv:2107.03374 [cs.LG] doi:10.48550/arXiv.2107.03374
QiHong Chen, Jiachen Yu, Jiawei Li, Jiecheng Deng, Justin Tian Jin Chen, and
Iftekhar Ahmed. 2024. A Deep Dive Into Large Language Model Code Generation
Mistakes: What and Why? arXiv:2411.01414 [cs.SE]

Xinyun Chen, Maxwell Lin, Nathanael Scharli, and Denny Zhou. 2023. Teaching
Large Language Models to Self-Debug. arXiv:2304.05128 [cs.CL] d0i:10.48550/
arXiv.2304.05128

Tuan Dinh, Jinman Zhao, Samson Tan, Renato Negrinho, Leonard Lausen, Sheng
Zha, and George Karypis. 2023. Large language models of code fail at completing
code with potential bugs. In Proceedings of the 37th International Conference on
Neural Information Processing Systems (New Orleans, LA, USA) (NIPS °23). Curran
Associates Inc., Red Hook, NY, USA, Article 1794, 27 pages.

Shihan Dou, Haoxiang Jia, Shenxi Wu, Huiyuan Zheng, Weikang Zhou, Muling
Wu, Mingxu Chai, Jessica Fan, Caishuang Huang, Yunbo Tao, Yan Liu, Enyu Zhou,
Ming Zhang, Yuhao Zhou, Yueming Wu, Rui Zheng, Ming Wen, Rongxiang Weng,
Jingang Wang, Xunliang Cai, Tao Gui, Xipeng Qiu, Qi Zhang, and Xuanjing
Huang. 2024. What’s Wrong with Your Code Generated by Large Language
Models? An Extensive Study. arXiv:2407.06153 [cs.SE] https://arxiv.org/abs/2407.
06153

Zhangyin Feng, Daya Guo, Duyu Tang, et al. 2020. CodeBERT: A Pre-Trained
Model for Programming and Natural Languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020. Association for Computational Lin-
guistics, Online, 1536-1547. doi:10.18653/v1/2020.findings-emnlp.139

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu,
Wei Li, Yinghan Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang,
Yuanzhuo Wang, Wen Gao, Lionel Ni, and Jian Guo. 2025. A Survey on LLM-as-
a-Judge. arXiv:2411.15594 [cs.CL] https://arxiv.org/abs/2411.15594

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
UniXcoder: Unified Cross-Modal Pre-training for Code Representation. In Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers). Association for Computational Linguistics, Dublin,
Ireland, 7212-7225. doi:10.18653/v1/2022.acl-long.508

D. Guo, S. Ren, S. Lu, et al. 2021. GraphCodeBERT: Pre-training Code Represen-
tations with Data Flow. In International Conference on Learning Representations.
Jingxuan He, Luca Beurer-Kellner, and Martin Vechev. 2022. On Distribution
Shift in Learning-based Bug Detectors. arXiv:2204.10049 [cs.LG] https://arxiv.
org/abs/2204.10049

Ye He, Zimin Chen, and Claire Le Goues. 2023. PreciseBugCollector: Extensible,
Executable and Precise Bug-Fix Collection: Solution for Challenge 8: Automat-
ing Precise Data Collection for Code Snippets with Bugs, Fixes, Locations, and
Types. In 2023 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 1899-1910. doi:10.1109/ASE56229.2023.00163

Steffen Herbold, Alexander Trautsch, and Benjamin Ledel. 2020. Large-Scale
Manual Validation of Bugfixing Changes. In Proceedings of the 17th International
Conference on Mining Software Repositories (Seoul, Republic of Korea) (MSR °20).
Association for Computing Machinery, New York, NY, USA, 611-614. doi:10.
1145/3379597.3387504

Kim Herzig and Andreas Zeller. 2013. The impact of tangled code changes. In 2013
10th Working Conference on Mining Software Repositories (MSR). IEEE, 121-130.
David Hovemeyer and William Pugh. 2004. Finding Bugs is Easy. In Companion
to the 19th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA ’04) (OOPSLA °04). ACM, 22-26.
doi:10.1145/1028664.1028668

Kai Huang, Zhengzi Xu, Su Yang, Hongyu Sun, Xuejun Li, Zheng Yan, and
Yuqing Zhang. 2023. A Survey on Automated Program Repair Techniques.
arXiv:2303.18184 [cs.SE] doi:10.48550/arXiv.2303.18184

Yuheng Huang, Lei Ma, Keizaburo Nishikino, and Takumi Akazaki. 2025. Risk
Assessment Framework for Code LLMs via Leveraging Internal States. In Com-
panion Proceedings of the 33rd ACM International Conference on the Foundations of
Software Engineering (FSE °25). ACM, Trondheim, Norway. doi:10.1145/3696630.
3728566

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche
Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou
Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample,
Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep
Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet,
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. 2024.
Mixtral of Experts. arXiv:2401.04088 [cs.LG] https://arxiv.org/abs/2401.04088
Yanjie Jiang, Hui Liu, Nan Niu, Lu Zhang, and Yamin Hu. 2021. Extracting Concise
Bug-Fixing Patches from Human-Written Patches in Version Control Systems.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
686—-698. doi:10.1109/ICSE43902.2021.00069

https://arxiv.org/abs/2503.06327
https://doi.org/10.48550/arXiv.2503.06327
https://doi.org/10.1109/APSEC53868.2021.00022
https://doi.org/10.1145/3212695
https://doi.org/10.1109/STI59943.2023.10255392
https://arxiv.org/abs/2108.07732
https://doi.org/10.48550/arXiv.2108.07732
https://doi.org/10.1109/TPAMI.2013.50
https://research.google/blog/ai-in-software-engineering-at-google-progress-and-the-path-ahead/
https://research.google/blog/ai-in-software-engineering-at-google-progress-and-the-path-ahead/
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/arXiv.2107.03374
https://arxiv.org/abs/2411.01414
https://arxiv.org/abs/2304.05128
https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.48550/arXiv.2304.05128
https://arxiv.org/abs/2407.06153
https://arxiv.org/abs/2407.06153
https://arxiv.org/abs/2407.06153
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://arxiv.org/abs/2411.15594
https://arxiv.org/abs/2411.15594
https://doi.org/10.18653/v1/2022.acl-long.508
https://arxiv.org/abs/2204.10049
https://arxiv.org/abs/2204.10049
https://arxiv.org/abs/2204.10049
https://doi.org/10.1109/ASE56229.2023.00163
https://doi.org/10.1145/3379597.3387504
https://doi.org/10.1145/3379597.3387504
https://doi.org/10.1145/1028664.1028668
https://arxiv.org/abs/2303.18184
https://doi.org/10.48550/arXiv.2303.18184
https://doi.org/10.1145/3696630.3728566
https://doi.org/10.1145/3696630.3728566
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://doi.org/10.1109/ICSE43902.2021.00069

An Automated Methodology for Generating Labeled Datasets of Semantic Errors in Code

[28]

[29]

[30

[31

[32

[33]

(34

[35

[36]

[37]

[38]

[39]

[40

[41]

[42]

[43

[44

[45

S
&

[47]

René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4]: a database of
existing faults to enable controlled testing studies for Java programs. In Proceed-
ings of the 2014 International Symposium on Software Testing and Analysis (San
Jose, CA, USA) (ISSTA 2014). Association for Computing Machinery, New York,
NY, USA, 437-440. doi:10.1145/2610384.2628055

René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4]: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(ISSTA ’14). ACM, San Jose, CA, USA, 437-440. doi:10.1145/2610384.2628045
Vinay Kabadi, Dezhen Kong, Siyu Xie, Lingfeng Bao, Gede Artha Azriadi Prana,
Tien-Duy B. Le, Xuan-Bach D. Le, and David Lo. 2023. The Future Can’t Help
Fix The Past: Assessing Program Repair In The Wild. In 2023 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 50-61. doi:10.1109/
ICSME58846.2023.00017

Rafael-Michael Karampatsis and Charles Sutton. 2020. How Often Do Single-
Statement Bugs Occur? The ManySStuBs4] Dataset. In Proceedings of the 17th
International Conference on Mining Software Repositories (MSR "20). ACM, Seoul,
Republic of Korea, 358-362. doi:10.1145/3379597.3387491

Rafael Michael Karampatsis and Charles Sutton. 2020. ManySStuBs47 Dataset.
doi:10.5281/zenodo.3653444

Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass Benchmarks for Automated Repair of C Programs. IEEE Transactions
on Software Engineering 41, 12 (2015), 1236-1256. doi:10.1109/TSE.2015.2454513
Meir M. Lehman. 1979. On understanding laws, evolution, and conservation
in the large-program life cycle. Journal of Systems and Software 1, 3 (jul 1979),
213-221. doi:10.1016/0164-1212(79)90022-0

Xiaoli Lian, Shuaisong Wang, Jieping Ma, Fang Liu, Xin Tan, Li Zhang, Lin Shi,
and Cuiyun Gao. 2024. Uncovering Weaknesses in Neural Code Generation.
arXiv:2407.09793 [cs.SE] https://arxiv.org/abs/2407.09793

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is
Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large
Language Models for Code Generation. In Thirty-seventh Conference on Neural
Information Processing Systems. https://openreview.net/forum?id=vTfV3I2vLg
Shukai Liu, Linzheng Chai, Jian Yang, Jiajun Shi, He Zhu, Liran Wang, Ke Jin, Wei
Zhang, Hualei Zhu, Shuyue Guo, Tao Sun, Jiaheng Liu, Yunlong Duan, Yu Hao,
Liqun Yang, Guanglin Niu, Ge Zhang, and Zhoujun Li. 2025. MdEval: Massively
Multilingual Code Debugging. arXiv:2411.02310 [cs.CL] https://arxiv.org/abs/
2411.02310

Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
mistakes: a comprehensive study on real world concurrency bug characteristics.
In Proceedings of the 13th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS XIII). Association for Com-
puting Machinery, New York, NY, USA, 329-339. doi:10.1145/1346281.1346323
Wei Ma, Shangqing Liu, Zhihao Lin, Wenhan Wang, Qiang Hu, Ye Liu, Cen Zhang,
Liming Nie, Li Li, and Yang Liu. 2023. The LMs: Understanding Code Syntax and
Semantics for Code Analysis. arXiv:2305.12138 [cs.LG]

Martin Monperrus. 2018. The Living Review on Automated Program Repair. Tech-
nical Report hal-01956501. HAL/archives-ouvertes.fr.

Doha Nam, Taehyoun Kim, Duksan Ryu, and Jongmoon Baik. 2025. Probing
Pre-trained Language Models on Code Changes: Insights from ReDef, a High-
Confidence Just-in-Time Defect Prediction Dataset. arXiv:2509.09192 [cs.SE]
https://arxiv.org/abs/2509.09192

Md Nahidul Islam Opu, Shaowei Wang, and Shaiful Chowdhury. 2025. LLM-
Based Detection of Tangled Code Changes for Higher-Quality Method-Level Bug
Datasets. arXiv:2505.08263 [cs.SE] https://arxiv.org/abs/2505.08263
Profir-Petru Parundefinedachi, Santanu Kumar Dash, Miltiadis Allamanis, and
Earl T. Barr. 2020. Flexeme: untangling commits using lexical flows. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Virtual Event, USA)
(ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA,
63-74. doi:10.1145/3368089.3409693

Shaoming Qiu, Bicong E, Jingjie He, and Liangyu Liu. 2024. Survey of Software
Defect Prediction Features. Neural Computing and Applications 37, 4 (dec 2024),
2113-2144. doi:10.1007/s00521-024-10937- 1

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundare-
san, Ming Zhou, Ambrosio Blanco, and Shuai Ma. 2020. CodeBLEU: a Method for
Automatic Evaluation of Code Synthesis. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020. Association for Computational Linguistics,
Online, 2836-2847. doi:10.18653/v1/2020.findings-emnlp.255

Henry Gordon Rice. 1953. Classes of Recursively Enumerable Sets and Their
Decision Problems. Trans. Amer. Math. Soc. 74, 2 (1953), 358-366. d0i:10.2307/
1990888

Cedric Richter and Heike Wehrheim. 2022. TSSB-3M: mining single statement
bugs at massive scale. In Proceedings of the 19th International Conference on
Mining Software Repositories (Pittsburgh, Pennsylvania) (MSR "22). Association
for Computing Machinery, New York, NY, USA, 418-422. doi:10.1145/3524842.
3528505

(48]

[49

[50

5
=

[52

[53

[55]

[56

(57]

o
&,

[59

[60

[62

[63

(64

[65

[66

[67

[68

LLM4Code 26, April 12-18, 2026, Rio de Janeiro, Brazil

Agnia Sergeyuk, Yaroslav Golubev, Timofey Bryksin, and Iftekhar Ahmed. 2024.
Using Al-Based Coding Assistants in Practice: State of Affairs, Perceptions, and
Ways Forward. arXiv:2406.07765 [cs.SE]

Xuezhi Song, Yijian Wu, Junming Cao, Bihuan Chen, Yun Lin, Zhengjie Lu,
Dingji Wang, and Xin Peng. 2023. BugMiner: Automating Precise Bug Dataset
Construction by Code Evolution History Mining. In 2023 38th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE). 1919-1929.
doi:10.1109/ASE56229.2023.00201

Florian Tambon, Arghavan Moradi Dakhel, Amin Nikanjam, Foutse Khomh,
Michel C. Desmarais, and Giuliano Antoniol. 2024. Bugs in Large Language
Models Generated Code: An Empirical Study. arXiv:2403.08937 [cs.SE] doi:10.
48550/arXiv.2403.08937

Florian Tambon, Arghavan Moradi-Dakhel, Amin Nikanjam, Foutse Khombh,
Michel C. Desmarais, and Giuliano Antoniol. 2025. Bugs in large language
models generated code: an empirical study. Empirical Softw. Engg. 30, 3 (Feb.
2025), 48 pages. doi:10.1007/s10664-025-10614-4

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai Lin, Yinxu Pan, Yesai Wu,
Hui Haotian, Liu Weichuan, Zhiyuan Liu, and Maosong Sun. 2024. DebugBench:
Evaluating Debugging Capability of Large Language Models. In Findings of the
Association for Computational Linguistics: ACL 2024, Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (Eds.). Association for Computational Linguistics, Bangkok,
Thailand, 4173-4198. doi:10.18653/v1/2024.findings-acl.247

Frank Tip, Jonathan Bell, and Max Schafer. 2025. LLMorpheus: Mutation Testing
Using Large Language Models. IEEE Transactions on Software Engineering 51, 6
(2025), 1645-1665. doi:10.1109/TSE.2025.3562025

Weixi Tong and Tianyi Zhang. 2024. CodeJudge: Evaluating Code Generation
with Large Language Models. arXiv:2410.02184 [cs.LG] https://arxiv.org/abs/
2410.02184

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
arXiv:2302.13971 [cs.CL] https://arxiv.org/abs/2302.13971

Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2019. Learning How to Mutate Source Code from
Bug-Fixes. In 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 301-312. doi:10.1109/ICSME.2019.00046

Z. Wang, H. Zhang, L. Zhang, et al. 2024. RFCScan: An Autonomous Agent for
Detecting Functional Bugs in Network Protocol Implementations. arXiv preprint
arXiv:2405.08447 (2024).

Zhijie Wang, Zijie Zhou, Da Song, Yuheng Huang, Shengmai Chen, Lei Ma, and
Tianyi Zhang. 2025. Towards Understanding the Characteristics of Code Genera-
tion Errors Made by Large Language Models. In Proceedings of the 47th IEEE/ACM
International Conference on Software Engineering (ICSE "25). IEEE/ACM.

Hiroya Watanabe, Masanari Kondo, Eunjong Choi, and Osamu Mizuno. 2024. Ben-
efits and Pitfalls of Token-Level SZZ: An Empirical Study on OSS Projects. In 2024
IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). 776-786. doi:10.1109/SANER60148.2024.00084

Ratnadira Widyasari, Sheng Qin Sim, Camellia Lok, et al. 2020. BugsInPy: A
Database of Existing Bugs in Python Programs to Enable Controlled Testing and
Debugging Studies. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/Fse "20). ACM, 1556—1560. doi:10.1145/3368089.3417943

W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
Survey on Software Fault Localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707-740. doi:10.1109/TSE.2016.2521368

Angus Yang, Zehan Li, and Jie Li. 2024. Advancing GenAI Assisted Programming-
A Comparative Study on Prompt Efficiency and Code Quality Between GPT-4
and GLM-4. arXiv:2402.12782 [cs.SE] doi:10.48550/arXiv.2402.12782

Deheng Yang, Yan Lei, Xiaoguang Mao, David Lo, Huan Xie, and Meng Yan. 2021.
Is the Ground Truth Really Accurate? Dataset Purification for Automated Pro-
gram Repair. In 2021 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). 96-107. doi:10.1109/SANER50967.2021.00018

Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. 2009. MAPO: Mining and
Recommending API Usage Patterns. 318-343. doi:10.1007/978-3-642-03013-0_15
Hao-Nan Zhu, Robert M. Furth, Michael Pradel, and Cindy Rubio-Gonzélez. 2025.
From Bugs to Benchmarks: A Comprehensive Survey of Software Defect Datasets.
CoRR abs/2504.17977 (2025). https://arxiv.org/abs/2504.17977

Hao-Nan Zhu and Cindy Rubio-Gonzélez. 2023. On the Reproducibility of Soft-
ware Defect Datasets. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). 2324-2335. doi:10.1109/ICSE48619.2023.00195

Terry Yue Zhuo. 2024. ICE-Score: Instructing Large Language Models to Evaluate
Code. arXiv:2304.14317 [cs.AI] https://arxiv.org/abs/2304.14317

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, et al. 2025. BigCodeBench:
Benchmarking Code Generation with Diverse Function Calls and Complex In-
structions. In International Conference on Learning Representations (ICLR).

https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628045
https://doi.org/10.1109/ICSME58846.2023.00017
https://doi.org/10.1109/ICSME58846.2023.00017
https://doi.org/10.1145/3379597.3387491
https://doi.org/10.5281/zenodo.3653444
https://doi.org/10.1109/TSE.2015.2454513
https://doi.org/10.1016/0164-1212(79)90022-0
https://arxiv.org/abs/2407.09793
https://arxiv.org/abs/2407.09793
https://openreview.net/forum?id=vTfV3l2vLg
https://arxiv.org/abs/2411.02310
https://arxiv.org/abs/2411.02310
https://arxiv.org/abs/2411.02310
https://doi.org/10.1145/1346281.1346323
https://arxiv.org/abs/2305.12138
https://arxiv.org/abs/2509.09192
https://arxiv.org/abs/2509.09192
https://arxiv.org/abs/2505.08263
https://arxiv.org/abs/2505.08263
https://doi.org/10.1145/3368089.3409693
https://doi.org/10.1007/s00521-024-10937-1
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.2307/1990888
https://doi.org/10.2307/1990888
https://doi.org/10.1145/3524842.3528505
https://doi.org/10.1145/3524842.3528505
https://arxiv.org/abs/2406.07765
https://doi.org/10.1109/ASE56229.2023.00201
https://arxiv.org/abs/2403.08937
https://doi.org/10.48550/arXiv.2403.08937
https://doi.org/10.48550/arXiv.2403.08937
https://doi.org/10.1007/s10664-025-10614-4
https://doi.org/10.18653/v1/2024.findings-acl.247
https://doi.org/10.1109/TSE.2025.3562025
https://arxiv.org/abs/2410.02184
https://arxiv.org/abs/2410.02184
https://arxiv.org/abs/2410.02184
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.1109/ICSME.2019.00046
https://doi.org/10.1109/SANER60148.2024.00084
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1109/TSE.2016.2521368
https://arxiv.org/abs/2402.12782
https://doi.org/10.48550/arXiv.2402.12782
https://doi.org/10.1109/SANER50967.2021.00018
https://doi.org/10.1007/978-3-642-03013-0_15
https://arxiv.org/abs/2504.17977
https://doi.org/10.1109/ICSE48619.2023.00195
https://arxiv.org/abs/2304.14317
https://arxiv.org/abs/2304.14317

	Abstract
	1 Introduction
	2 Methodology
	2.1 Data Source
	2.2 Mutational Approach and Prompt Engineering
	2.3 Validation

	3 The Generated Dataset
	3.1 Dataset Schema
	3.2 Dataset Statistics

	4 Applications and Future Work
	4.1 Potential Applications
	4.2 Future Work

	5 Threats to Validity
	6 Related Work
	6.1 Approaches to Bug Data Collection
	6.2 Datasets for Analyzing LLM-Generated Code

	7 Conclusion
	References

