
How do third-party Python libraries use type annotations?
Eric Asare

New York University Abu Dhabi
Abu Dhabi, United Arab Emirates

eric.asare@nyu.edu

Sarah Nadi
New York University Abu Dhabi
Abu Dhabi, United Arab Emirates

sarah.nadi@nyu.edu

Abstract
Type hints (a.k.a. type annotations) in Python have become an im-
portant tool for improving code readability, supporting static anal-
ysis, and enabling early bug detection. Accordingly, it makes sense
for third-party libraries whose code is expected to be consumed
by external clients to adopt type annotations for these benefits.
However, it is unclear how pervasive the use of type annotations
is in third-party libraries. In this paper, we investigate the extent
to which third-party libraries have adopted type annotations and
whether library developers place annotations where they offer the
most benefit, such as on a library’s public API. We analyze 76,327
versions across 11,021 libraries on the Python Package Index (PyPI).
Our results show that 83.39% of libraries have at least one annota-
tion. We identify six evolution patterns and find that most libraries
maintain stable or gradually increasing annotation coverage, while
only 4.13% abandon annotations once adopted. We find that library
developers adopt type annotations to improve code clarity, linting,
documentation, and static analysis, but may remove them when
they cause errors or when the hints are considered unnecessary.
Perhaps surprisingly, we find that developers prioritize annotat-
ing private functions over public/client-facing ones. Encouragingly
though, many of these annotations are constrained and precise,
with few instances of the Any type, most of which occur in pa-
rameters of public functions. Based on our findings, we provide
implications for library developers and maintainers, package users,
community contributors and researchers.

1 Introduction
Python remains one of the most popular programming languages [2,
46, 50]. Since Python is dynamically typed, developers do not need
to declare the types of variables, functions, or other programming
elements when defining them. However, the lack of type informa-
tion has been shown to reduce the ability of type checkers to detect
bugs in Python code [22, 52], as well as autocompletion support in
Integrated Development Environments (IDEs).

Realizing the need for early detection of type-related bugs, Python
introduced the notion of optional typing with the release of PEP 484
in May 2015 [51], continued with PEP 561 in 2017 [45], and most
recently, PEP 749 in 2024 [56]. This became a middle ground that
allows developers to optionally add type information (referred to
as type hints or type annotations) to their code without completely
changing the nature of the language. Specifically, these type hints
are not checked or enforced by the Python interpreter. Instead, they
enable static analysis tools such as Pyright [32] and MyPy [35] to
detect type-related errors. After the introduction of type hints in
Python, several empirical studies looked into the popularity and

Conference’17, Washington, DC, USA
2026. ACM ISBN 978-x-xxxx-xxxx-x/YYYY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

adoption of type hints. Most notably, in 2020, Rak-amnouykit et
al. [44] reported that only 3.78% (2,678 out of 70,826) of Python
repositories used type annotations. In 2022, Di Grazia and Pradel [7]
found an increase to 6.92% (668 out of 9,655). The results of these
studies suggest that the adoption of Python type hints increased
over the years, although the overall adoption rates are low.

In addition to the data of these studies being at least three years
old, both studies considered all Python projects on GitHub, without
distinguishing the type of project. While it would be ideal to include
type annotations in all types of projects, it seems that third-party
libraries whose code is expected to be consumed by external clients
would benefit the most. A recent study on the misuse of Applica-
tion Programming Interfaces (APIs) of third-party Python libraries
shows that type dynamics have a non-negligible impact on API us-
ages in Python, where many incorrect assumptions about types are
made during the invocation of a third-party APIs, leading to their
incorrect behavior [16]. As one of the possible mitigation strategies,
the authors suggest incorporating more type annotations to enable
static checking or improving documentation. Industry developers
also share the opinion that increased type annotations in third-
party libraries is desired. For example, a recent discussion on the
Python forum by an engineering manager1 at Meta [31] suggests
that industry developers also share the opinion that increased type
annotations in third-party libraries is desired. The discussion shows
that a third of the top 2,000 Python packages lack type annotations,
leading to Meta and Quansight [43] collaborating to enhance type
coverage for major libraries in the Python scientific stack (Pandas
and NumPy); they have recently also invited the Python community
to nominate additional libraries for this initiative [9, 53].

Compared to the low annotation usage found when considering
any Python project [7, 44], the numbers in the above forum post
suggest that popular Python packages may be higher adopters of
type annotations. However, with more than 688,284 packages on
PyPI, it is not clear whether the general Python package ecosystem
is adopting type annotations as opposed to only the top packages.
We also do not know how annotation usage in these libraries has
evolved over time and how the decision to continue using or aban-
don annotations happens. Finally, given the nature and usage of
third-party libraries, it would be useful to understand if the usage
of type annotations differs between client-facing APIs (i.e., public
APIs) versus privately used functions.

Accordingly, in this paper, we conduct a large-scale empirical
study of the usage of type annotations in Python third-party li-
braries. We analyze type annotations on all functions from 76,327
versions across 11,021 libraries from the Python Package Index
(PyPI) to answer the following research questions:

1Aaron Pollack is an engineering manager at Meta. Post url https://discuss.python.
org/t/type-coverage-of-popular-python-packages-and-github-badge/63401

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://discuss.python.org/t/type-coverage-of-popular-python-packages-and-github-badge/63401
https://discuss.python.org/t/type-coverage-of-popular-python-packages-and-github-badge/63401

Conference’17, July 2017, Washington, DC, USA Eric Asare and Sarah Nadi

RQ1 What is the current adoption rate of type annotations
in third-party libraries?With the aim of understanding the
current annotation adoption in the Python package ecosys-
tem, this RQ quantifies the extent to which third-party li-
braries use annotations in their latest release.

RQ2 What are the evolution patterns of annotation adop-
tion? In RQ2, we focus on the subset of adopting libraries
and study how they came about this adoption. For exam-
ple, we want to understand if some libraries slowly grow
their annotation coverage while others abandon annotations,
as well as reasons behind such decisions. We use a mix of
quantitative and qualitative methods in this RQ.

RQ3 Which functions do developers prioritise annotating?
If developers prioritise the annotation of public functions,
this maximizes external correctness, usability, and safety of
the library’s APIs. Prioritizing private functions on the other
hand maximizes internal maintainability and refactoring
safety. RQ3 explores which functions developers annotate,
as well as the types they use in these annotations.

We find that third-party libraries are high adopters of type anno-
tations, with 83.39% of the analyzed Python libraries using at least
one type annotation. Among these adopting libraries, the median
proportion of annotated functions (which we refer to as annotation
coverage) is 19.68%. Thus, while the vast majority of libraries adopt
type annotations, they generally have low adoption coverage.

We also identify six patterns of how developers annotate their
packages over time. Notably, we find that 4.13% of libraries adopt an-
notations early and later abandon them, while 17.65% show steady
growth and 3.87% perform gradual removal. The majority however
(59.91%) remain stable with a constant coverage over time, which
implies that they keep annotating newly added functions as well.
Our qualitative analysis reveals that developers often adopt type
annotations to enhance linting, code clarity, documentation, and to
fix static errors reported by type checkers. From the issue conver-
sations between library and client developers, we also find cases
where annotations helped the library developers expose their blind
spots, reveal bugs, and highlight potential incorrect API usage.

Perhaps surprisingly, we find that 63.35% of libraries prioritize
annotating private functions over public ones, which is potentially
concerning given for the client-facing API. Encouragingly though,
most of the existing annotations are precise, with only a median of
2.33% of public function parameters annotated as Any.

Overall, our study reveals that while type annotation adoption is
growing, coverage remains limited and uneven across libraries. Ac-
cordingly, client developers may need to rely on external stubs [42]
or migrate toward libraries with more consistent annotation sup-
port to benefit from static analysis. Library developers should focus
not only on adopting annotations but also on improving public API
coverage to enhance usability and safety. Community contributors
and initiatives such as those by Meta and Quansight can use our
results to target low-coverage libraries and promote transparency
through ecosystem-level incentives like annotation badges. Finally,
researchers can build on this work to explore the relationship be-
tween annotation practices, API misuse, and software quality. To
summarize, we make the following contributions:

1 . Untyped
de f add (x , y) :

r e t u r n x + y

2 . P a r t i a l l y typed
de f add (x : i n t , y) :

r e t u r n x + y

3 . F u l l y typed
de f add (x : i n t , y : i n t) −> Any :

r e t u r n x + y

Listing 1: Gradual Typing in Python

• An empirical study that specifically focuses on annotation prac-
tices in third-party libraries. We study function-level type anno-
tations in Python libraries.
• A combination of quantitative and qualitative fundings that iden-
tify adoption trends and the reasons why some libraries continue
to add or remove type annotations.
• An understanding of annotation prioritisation in libraries.
• Discussion of the implications of our results for client developers,
community contributors, library developers, and researchers.
All our data and analysis code are available online on our artifact

page: https://figshare.com/s/c6c4225c9dcb5cd3e507.

2 Background and Terminology
Type Annotations and Gradual Typing. Type annotations, or type

hints in Python, are a way to explicitly declare the expected types
of program elements such as variables, function parameters, and
return values. Gradual typing allows developers to progressively
add type annotations to variables, functions and also symbols in a
Python 3 codebase. Listing 1 illustrates the gradual addition of type
hints to a function. In the first version of the add function, the func-
tion has no type hints or annotations, and is accordingly untyped.
In the second version, an annotation is added to one of the param-
eters to indicate that it expects an integer, making the function
partially typed. In the third version, both parameters are annotated
as integers along with the return type, making the function fully
typed. Note that the return type is annotated with Any, meaning
the function can return any value. Static type checkers like MyPy
or Pyright will not raise errors. This also applies to parameters
annotated with Any.

Typing Mechanisms: Inline vs Stub Files. Python supports two
main mechanisms for providing type annotations: Inline annota-
tions (PEP 484) [51] are written directly in the .py source code
(e.g., the type annotations in Listing 1) while using Stub files per
PEP 561 [45] keep type information in separate .pyi files. List-
ing 2 shows how we can fully type the add function that exists in
add.py in a separate corresponding stub file add.pyi. Stub files
may be included directly in a package or distributed separately on
PyPI [41] e.g., pandas-stubs2. Stub files can also be contributed to
Typeshed [42], a community effort to contribute type hints for the
Python standard library and some third-party libraries. Our study
focuses on inline and stub annotations that developers have added
within their own packages.

2https://pypi.org/project/pandas-stubs/

https://pypi.org/project/pandas-stubs/

How do third-party Python libraries use type annotations? Conference’17, July 2017, Washington, DC, USA

Stub −based typ ing (PEP 561)
F i l e : add . py i
d e f add (x : i n t , y : i n t) −> i n t : . . .

F i l e : add . py
de f add (x , y) :

r e t u r n x + y

Listing 2: Stub-based Typing

def add(x: int , y: int) -> int:

return x + y

result = add(5, "10") # Type error: str cannot be

added to int

Listing 3: Example of a Type Error in Python

Static Type Checkers. Several static type checkers have been
developed to leverage Python’s optional typing system. Notable
examples include MyPy [35], Pytype [11] (Google), Pyre and Pyre-
fly [10, 29] (Meta), Pyright [32] (Microsoft), and Pyinder [37]. These
tools analyze annotated code to detect type inconsistencies before
execution. Listing 3 shows an example of a type mismatch that
such detecters can catch before the code is executed. This type
error typically appears in the client’s IDE if the type checker is
integrated, or the client can run the type checker on the Python
file. For example, mypy add.py to see the same error.

Private vs Public Functions. While Python does not have explicit
access modifiers (i.e., private vs. public) to separate client-facing
APIs from internal functions, various conventions can indicate
whether a function/variable is intended for internal or external use:
• Conventionally, a leading single underscore (_myfunc) marks a
function as private while no leading underscore signals that it is
a public API.
• However, a module-level list __all__ can explicitly define which
symbols form the public API, even if they start with an under-
score.

Listing 4 illustrates these conventions. We refer to each of these
functions when annotated as private annotated or public annotated
in our analysis.

Pyright’s Type Completeness Feature. Pyright is a widely adopted
static Python type checker. It provides a unique type completeness3

feature that displays and quantifies how fully typed a project’s
public interface is. Pyright defines a codebase as type complete if all
public symbols in its interface are annotated with fully known types.
Private symbols are excluded from this calculation. A function or
method is considered type known if: (1) All input parameters have
annotations, (2) The return type is annotated and known, and (3)
The application of decorators preserves a known type. Essentially,
Pyright will mark a function that is not private as type known if it
is fully typed as shown in the third example of Listing 1.

To assess a library’s type completeness, Pyright can be run with
the following command:
pyright --outputjson --ignoreexternal --verifytypes <lib>

3https://microsoft.github.io/pyright/#/typed-libraries?id=library-interface

Module : example_module . py

_ _ a l l _ _ = [' p u b l i c _ f u n c ' , ' a l s o _ p u b l i c ']

d e f p u b l i c _ f u n c (a : i n t , b : i n t) −> i n t :
" " " P u b l i c anno t a t ed f u n c t i o n : l i s t e d in _ _ a l l _ _ and

has type anno t a t i o n s . " " "
r e t u r n a + b

de f a l s o _ p u b l i c (x) :
" " " Also p u b l i c but unannota ted " " "
r e t u r n x ∗ 2

de f _ p r i v a t e _ f u n c (y : s t r) −> s t r :
" " " P r i v a t e anno t a t ed f u n c t i o n : s i n g l e unde r s co r e

p r e f i x and anno t a t ed " " "
r e t u r n y − 1

de f _he l p e r () :
" " " P r i v a t e h e l p e r f u n c t i o n and not anno t a t ed " " "
pa s s

Listing 4: Example of Private vs Public Functions

{
" c a t e go ry " : " f u n c t i o n " ,
" name " : " m a t p l o t l i b . pyp l o t . p l o t " ,
" r e f e r en c eCoun t " : 1 ,
" i s E xpo r t e d " : t rue ,
" isTypeKnown " : t rue ,
" isTypeAmbiguous " : f a l s e ,
" d i a g n o s t i c s " : []

}

Listing 5: Pyright JSON output for a function in matplotlib
First, this checks for the presence of a py.typed file, as required by
PEP 561 [45], which mandates that library developers and package
maintainers include this file to declare that their library is typed.
If this file is not found, Pyright cannot run successfully. Once the
file is found, Pyright analyzes the library files, extracts the anno-
tation information, and computes the type completeness score for
all programming elements that form the interface, including type
aliases, variables, constants, and functions. For example, running
the Pyright command on matplotlib returns a completeness score
of 0.54. This completeness score applies to all public interface sym-
bols. In our study, we focus only on functions. Listing 5 shows the
function-level details available in the output, such as symbol names,
export status, and type knowledge for fine-grained analysis. We
discuss how we use Pyright to perform our analysis in Section 4.2.

Third Party Libraries. Third-party libraries are integral to mod-
ern software development. They provide ready to use code for many
different functionalities supporting software developers [36]. Open-
source software projects heavily rely on third-party libraries [55].
In the Python ecosystem, libraries (or packages) can be downloaded
from PyPI. As of October 2025, PyPI contains 688,284 libraries/pack-
ages, 7,496,956 releases and 965,056 unique downloaders [41].

3 Related Work
We discuss the existing research studying Python type annotations,
and how it motivates our work.

Type Annotation Adoption and Practices. Rak-amnouykit et al. [44]
report low adoption rates of Python 3-style annotations, with only

https://microsoft.github.io/pyright/#/typed-libraries?id=library-interface

Conference’17, July 2017, Washington, DC, USA Eric Asare and Sarah Nadi

2,678 out of more than 70,000 repositories (3.78%) containing partial
annotations as of March 2019. They find that developers primar-
ily annotate function parameters, followed by return types, and
less frequently global assignments. They also find that developer-
written annotations are often difficult for type checkers like PyType
or MyPy to validate, with only 15% of typed repositories being type-
correct in MyPy. Two years later, DiGrazia and Pradel [7] analyzed
1.4 million annotation changes across 9,655 GitHub projects cre-
ated between 2010 and 2019 and found that type annotations are
increasingly popular but still uncommon: only 7% of projects used
type annotations at all in 2021, and even in annotated projects, less
than 10% of possible code elements are annotated. They found that
developers prefer annotating function arguments and return types.
By analyzing the evolution of the type annotations at the commit
level, they identify three evolution patterns: regular annotation,
type sprints, and occasional use. While they do not delve into the
reasons different projects adopt/abandon annotations, they found
that projects with more contributors tend toward regular annota-
tion, while smaller teams follow occasional use. They also found a
positive correlation (Pearson coefficient 0.704) between the number
of annotations and detected type errors using Pyre [10], suggesting
that annotations help reveal errors. Both studies analyzed available
GitHub repositories, without distinguishing between third-party
libraries, system projects, or personal/toy projects.

Reflecting on the above work, we see that the adoption of type
annotations increased between 2019 and 2021, but is still low overall.
While having type hints for any Python project is desirable, we
believe that it is even more important for third-party libraries that
offer APIs that other clients depend on. For example, recent work
by He et al. [16] shows that type dynamics and typing problems
are the main cause of API misuse of Python libraries. Furthermore,
recent discussions on Python forums indicate that about one-third
of the top 2000 PyPI packages have no type annotations, while
the remaining 70% have some coverage or Typeshed stubs4. Such
discussions suggest that the developer community understands the
value of type annotations in third-party libraries. Inspired by this,
our work studies a broader set of Python packages, not limited only
to popular ones, to understand ecosystem-wide annotation rates
and evolution patterns in third-party libraries, using a combination
of quantitative and qualitative analyses. Additionally, we dive into
understanding annotation adoption at the API level, distinguishing
between client-facing APIs and private functions.

Type Annotations and Defects. Chen et al. [4] conduct an empiri-
cal study on nine large Python systems (over 460K LOC) and find
that inconsistent variable types are common and significantly cor-
relate with bugs, emphasizing the risks of dynamic typing. Lin et
al. [25] study type annotation-related defects across 13 Python
projects, proposing a taxonomy for defect classification. Xu et
al. [52] investigate three type checkers (MyPy, Pyright, PyType)
and find that adding type annotations significantly improves bug
detection, observing that 29 out of 40 bugs were detected after
annotation compared to 14 before. This finding, which highlights
the critical role of function parameter annotations in bug discov-
ery, reinforces the importance of studying annotation patterns at

4https://discuss.python.org/t/type-coverage-of-popular-python-packages-and-
github-badge/63401

the function level, particularly for client-facing API functions in
libraries. Similarly, Khan et al. [22] report that 15% of defects in
their dataset could have been detected and prevented by MyPy if
type annotations were added. We leverage the Pyright static type
checker in our analysis to identify annotated functions. However,
instead of focusing on defect detection and the efficacy of specific
type checkers, our goal is to understand the broader evolution and
adoption of type annotations in Python third-party libraries.

Automatic Generation and Fixing of Type Annotations. Research
in this category focuses on techniques to automatically infer and
generate type annotations or fix type errors in Python projects.
Guo et al. [15] analyzed existing inference tools, noting their dif-
ficulty in achieving high coverage and accuracy simultaneously,
and implemented a tool to demonstrate pathways for improvement.
Sun et al. [48] presented Stray, a static type recommendation ap-
proach designed to improve type correctness by leveraging program
analysis instead of machine learning. Furthermore, Chow et al. [5]
developed PyTy, the first learning-based repair technique for fixing
Python type errors, demonstrating its real-world efficacy with 20
out of 30 suggested fixes being merged by developers. We do not
explore generating type annotations in our work.

Summary. Overall, we find that most existing studies focus on
file- or project-level changes and usually consider any Github
Python repo/project regardless of its nature. Unlike general Python
repositories that are not designed to be imported and used by other
developers, third-party libraries explicitly expose their functions
for external use. This distinctive characteristic motivates our focus
on Python annotations in third-party libraries, particularly within
their functions. Specifically, in contrast to prior studies, we (1) focus
on third-party libraries that are expected to be used by down-stream
clients and (2) investigate a granular, function-level perspective
to understand how type annotations are adopted and prioritized
across the wider ecosystem of third-party libraries.

4 Empirical Study Setup
Figure 1 shows an overview of the data we collect and analyze to
answer our three research questions. In this section, we discuss
the top part of that figure, which represents the common data
collection and annotation extraction steps. We explain the metrics
and additional methods used to answer each RQ in their respective
sections (Sections 5-7).

4.1 Studied Libraries
To collect all available Python third-party libraries, we query the
public PyPI dataset [8] on Google BigQuery [12] for all packages
downloaded in May 2025. This provides us with 648,818 packages.
To focus on actively used and type-hint-capable packages, we apply
several filters.

• We only retain packages with more than 100 downloads to focus
on actively used libraries. The threshold is based on our frequency
distribution analysis, which showed that packages with <100
downloads form a long tail and rarely represent actively used
libraries. This step filters out 286,641(44.18%) packages.

https://discuss.python.org/t/type-coverage-of-popular-python-packages-and-github-badge/63401
https://discuss.python.org/t/type-coverage-of-popular-python-packages-and-github-badge/63401

How do third-party Python libraries use type annotations? Conference’17, July 2017, Washington, DC, USA

Figure 1: Overview of our empirical study. ©Microsoft Corpo-
ration (Pyright Logo). © Python Software Foundation (PyPI
Logo). Diagram created using draw.io (diagrams.net).

• We exclude 3,150 (0.49%) packages that contain only stub files
in order to focus on libraries that offer APIs that can be used by
other client code.
• We include only libraries whose latest release supports Python 3
(required for type annotations) and that have at least one major or
minor release. This criterion filters out 144,344 (22.25%) packages.
• We only retain packages marked as Production or Stable in their
metadata to focus on well-tested, reliable libraries rather than
experimental ones. This filters out 181,655 (29.99%) packages.
After the initial filtering, we have 33,028 (5.09%) packages from

the May 2025 BigQuery snapshot. The total number of versions
corresponding to these packages is 270,354.

4.2 Annotation Extraction
As a prerequisite to answering all our RQs, we need to analyze each
library’s source code to identify type annotations in its functions.
We focus primarily on functions in this study, because third-party
libraries typically expose their functions for client use and static
analysis. We use Pyright [32] to identify annotated functions. As
discussed in Section 2, Pyright’s default behavior is to return type
completeness information only for public interface symbols. We
modify Pyright to return type completeness information for both
public and private symbols. We also modify its output to include
each function’s parameters and their types, the return type, and
the full function signature.

To analyze different library versions with Pyright, we proceed
as follows. (1) we install the target library version in an isolated vir-
tual environment using pip and record the location of its installed
source code. (2) If the package’s source code does not already in-
clude a py.typed marker file, we add an empty one at the package
root to enable Pyright’s type analysis. (3) We then run our modified
version of Pyright locally with the –verifytypes flag to extract
symbol information. (4) For each successfully analyzed version, we
store the extracted symbol information in the corresponding library
output file. Finally, (5) we retrieve the release and creation dates
for all successfully analyzed versions from PyPI.

We parallelize the process of collecting the symbol information
on our university’s High Performance Computing (HPC) platform.
To enable replication of our analysis on similar HPC platforms,

Table 1: Current adoption and coverage of type annotations
in third-party libraries (latest release).

Metric Value

Libraries with Adoptions 9,190 (83.39%)
Median Coverage (Adopting) 19.68%
Mean Coverage (Adopting) 34.55%

Libraries without Adoptions 1,831 (16.61%)

Total Libraries 11,021 (100%)

our online artifact: https://figshare.com/s/c6c4225c9dcb5cd3e507 in-
cludes a Singularity environment that contains the Python version,
the modified Pyright and Node versions, the analysis results (includ-
ing failed cases), the HPC job submission files, a setup README,
and all data collection scripts. Our data collection ran across 3,500
CPU cores for approximately 72 hours.

Of the 33,028 packages, 20,811 packages failed to install, and
131 were downloaded but had no identifiable root directory (e.g.,
namespace packages). This leaves 12,087 packages successfully
downloaded. Among these, Pyright produced empty symbol tables
(i.e., no functions) for only 1,032 packages, often due to unresolved
imports or module resolution failures. An additional 34 packages
had technical timeout or parallelization issues on the HPC we ran
on. At the end, we are left with 11,021 packages containing usable
function annotation data.

The final data we use to answer our research questions are the
complete set of labelled symbols per version for each of 76,327
versions across 11,021 third-party Python libraries.

5 RQ1: What is the current adoption rate of
type annotations in third-party libraries?

Methods. We consider a function as annotated only if all its ar-
guments and return type are annotated, i.e., it is marked by Pyright
as istypeknown. This ensures consistency with Pyright’s notion of
completeness and avoids inflating coverage through partially anno-
tated functions that do not provide full type information to users
or type checkers. Based on this, we define the following metrics to
study the adoption of type annotations.
• Library-level adoption: A library is considered to have adopted
type annotations (i.e., is an adopting library) if at least one of its
functions in the latest release is annotated.
• Annotation coverage: For each adopting library, we measure the
percentage of functions that are annotated. This includes both
public and private functions.

Results. Table 1 shows that out of the 11,021 libraries we study,
9,190 (83.39%) contain at least one function with type annotations,
while 1,831 (16.61%) do not have annotations for any of their func-
tions. This indicates that type annotations are present in a substan-
tial subset of the ecosystem.

We now focus on the 9,190 libraries that have adopted type
annotations to understand the variance in annotation coverage.
We summarize the distribution of annotation coverage across all

https://figshare.com/s/c6c4225c9dcb5cd3e507

Conference’17, July 2017, Washington, DC, USA Eric Asare and Sarah Nadi

Table 2: Sample of libraries with annotation coverage and characteristics.

Library Coverage Description Stars Contrib. Downloads LOC #Func

Pub Priv

MXNet 0.98% Deep learning framework designed for both
efficiency and flexibility

20.8K 866 778.7K 119.2K 3K 998

XBlock 4.91% Open edX component architecture for build-
ing courseware

467 94 98.5K 6.4K 633 59

svgelements 4.99% High fidelity SVG parsing and geometric ren-
dering

162 10 175.9K 12.5K 526 55

fastai 8.34% Simplifies training fast and accurate neural
nets using modern best practices

27.5K 247 652.8K 14.9K 11.9K 226

scipy 9.42% Fundamental algorithms for scientific comput-
ing in Python

14.1K 1.6K 20.5M 292.2K 11.5K 4.5K

Flask 91.64% Simple framework for building complex web
applications

70.5K 732 142.4M 10.3K 302 81

pytest 92.31% Simple powerful testing with Python 13.2K 915 244.2M 61.2K 13 0
scalene 94.34% High-performance CPU, GPU and memory

profiler for Python
13.0K 57 238.1K 14.4K 89 17

Blacksmith 97.49% REST API client designed for microservices 9 4 859 10.4K 252 27
humanize 100.00% Convert data into human-readable formats 662 37 26.8M 2.0K 43 26

Figure 2: Distribution of annotation coverage across 9,190
adopting libraries, separated by creation date.

adopting libraries, with the median and mean values in Table 1.
We find that the median annotation coverage is 19.68%, meaning
that in a typical adopting library, only about one fifth of the func-
tions are annotated. The mean coverage is 34.55%, indicating that
a small number of highly annotated libraries pull the average up-
ward. The violin plot in Figure 2 shows that a large concentration
of the libraries (regardless of their creation date) are around the
10% coverage range and another much smaller concentration close
to the 100% coverage. More precisely, we find that 3,471 (37.8%) of
libraries fall within the 0–10% coverage range, while surprisingly,
around 1,029 (11.2%) have coverage between 90% and 100%.

Table 2 shows a sample of five libraries from each of the two
extreme coverage ranges, along with their descriptions and popu-
larity and size characteristics. Notably, some very popular libraries

(e.g., scipy) have low annotation coverage while less popular li-
braries (e.g., humanize) have high annotation coverage. We run a
Spearman correlation test to investigate if any of these characteris-
tics generally correlate with annotation coverage. However, since
not all packages on PyPI have corresponding GitHub repositories,
we could run this correlation analysis for only 6,691 libraries. We
find that larger projects, measured by lines of code (LOC), tend to
have slightly lower annotation coverage (Spearman’s 𝑟 = −0.175,
𝑝 < 0.05). Although statistically significant, this correlation reflects
only a weak negative relationship. Popular projects, measured by
the number of stars, also show a slight negative correlation with
annotation coverage (𝑟 = −0.133, 𝑝 < 0.05), again indicating only a
weak negative relationship. Similarly, projects with more contribu-
tors exhibit a weak negative correlation with annotation coverage
(𝑟 = −0.141, 𝑝 < 0.05). We speculate that since large projects have
more code to annotate, high coverage becomes harder to achieve. It
could also be the case that annotation adoption decisions are made
even before a library becomes popular by stars or amasses a large
contributor base. We do not find statistically signficant correlations
between annotation coverage and number of downloads suggesting
that current activity levels are not the main driver of adoption.

Since type hints became available in Python 3.5 in September
2015 [51], libraries created before this release may not have adopted
them, whereas libraries created afterward are more likely to do so.
Accordingly, we compare the current adoption rates of libraries
created before September 2015 (legacy) and those created after
(modern). Our dataset contains 1,743 legacy libraries and 7,442
modern libraries. The violin plot in Figure 2 shows that modern
libraries exhibit a higher median annotation coverage of 25.42%,
compared to 7.25% for legacy libraries. A Mann–Whitney U test

How do third-party Python libraries use type annotations? Conference’17, July 2017, Washington, DC, USA

confirms that this difference is statistically significant (p = 1.22e-
99), suggesting that older projects were slower to adopt type hints,
whereas newer libraries gradually embrace PEP 484. We further
study evolution patterns in RQ2.

Discussion. Together, these findings confirm findings from prior
studies that type annotations exist in Python repositories [44] and
are becoming increasingly popular [7]. It is interesting to note that
even though we analyze 14.4% more projects than the most recent
study in 2022 [7], we observe a much higher adoption rate than
the previously reported 7%. Our results suggest that in addition
to a potential overall growth in annotation adoption, third-party
libraries are more likely to adopt annotations than less "client-
facing" code. Among the adopting libraries, a large proportion
(37.8%) have at most 10% of their functions annotated while only
11.2% have at least 90% of their functions annotated.

RQ1 Summary: 83.39% of Python libraries use type annotations.
However, the median annotation coverage across adopting li-
braries is only 19.68%, with (37.8%) have at most 10% annotation
coverage while only 11.2% have at least 90% annotation coverage.

6 RQ2: What are the evolution patterns of
annotation adoption?

Methods. To answer RQ2, we focus on the subset of adopting
libraries and use a mix of quantitative and qualitative methods. We
consider adopting libraries with at least 4 releases to have enough
data points to establish meaningful trends. We only consider major
or minor releases, and exclude patch-only releases. In total we
consider 5,014 adopting libraries to identify evolution trends.

Quantitative Trend Analysis: We develop an algorithm to au-
tomatically categorize evolution trends. To develop this algorithm,
we first manually examine the evolution graphs of 80 randomly se-
lected adopting libraries to understand potential evolution patterns.
Our manual analysis revealed six recurring patterns: constant, grew
over time, grew and dropped, removed over time, adopted and aban-
doned, and removed and rebounded. We then design quantitative
methods that allow us to detect these patterns at scale leading to
the development of Algorithm 1.

For each library, we order releases chronologically and compute
the maximum adoption coverage𝑚𝑎𝑥 to compare with the latest
coverage. If a library retains less than 20% of its 𝑚𝑎𝑥 coverage
(i.e., losing more than 80%), we label it as Adopted and Abandoned
(Lines 3–5). We empirically chose this threshold to differentiate
gradual removal over time from those characterized by large, abrupt
declines in coverage.

Otherwise, we apply a Mann–Kendall (MK) test [19] to iden-
tify an overall trend in the ordered coverages (Line 8). The MK
test outputs an increasing or decreasing trend when the change
is statistically significant, and no trend when it is not. However,
manual comparisons with the graphs revealed two limitations of
the MK test. First, MK is sensitive to small marginal fluctuations,
e.g., a change from 7.3% to 7.4% coverage is classified as increasing.
Second, MK can miss important structural shifts, e.g., prolonged
growth followed by a sharp decline may still be classified as increas-
ing overall. To mitigate sensitivity to small variations, we apply a
standard deviation threshold that filters out marginal changes while

highlighting substantial variation (Line 7). We settle on a threshold
of 5% after experimenting with different thresholds (Lines 10–11).
To address MK’s inability to capture recent shifts, we introduce a re-
cent trend check (Line 9). Specifically, we consider the most recent
25% of releases, fit a linear model using SciPy’s linregress, and
use the resulting slope to determine whether coverage is currently
increasing or decreasing. We compute this recent slope s only when
more than two recent releases are available, corresponding to at
least eight total releases. We manually validated a sample of graphs
to validate the regression fit.

Lines 12 onwards show how we use the combination of𝑀𝐾trend
and recent slope s to determine adoption patterns. If the𝑀𝐾trend is
increasing but the recent slope is strongly negative (<-1), then we
categorize the trend as Grew and Dropped (Lines 12-13). Conversely,
if the 𝑀𝐾trend is decreasing but the recent slope is strongly posi-
tive (>1), then we categorize the trend as Removed and Rebounded
(Lines 14-15). If 𝑀𝐾trend is increasing and the recent slope is also
positive (>0), we consider it as Grew over time (Lines 16-17). Based
on our examination of the evolution graphs, we also consider the
case where the𝑀𝐾trend failed to detect an overall trend but there is
a strong positive recent slope (>1) as Grew over time (Line 16). The
inverse applies for Removed over time (Lines 18-19).

Finally, if none of the above patterns are detected, we categorize
the library’s adoption as No Pattern (Line 21). Note that No Pat-
tern denotes the absence of a quantifiably identifiable pattern, not
the absence of any variation. Such libraries may still exhibit small
variations, which is why we still sample from this category in the
qualitative analysis to understand any interesting adoption/aban-
donment patterns that may have been missed by the quantitative
detection, as well as their reasons (when available).

QualitativeAnalysis: To further understand the adoption trends
observed in our quantitative analysis, we conduct a qualitative
analysis on a statistically representative sample of 68 libraries (90%
confidence level with a 10%margin of error). To ensure adequate rep-
resentation from each evolution category, we apply proportionate
stratified sampling [6, 24]. We round up fractional sample sizes to
the nearest whole number (e.g., 3.3 becomes 4), which results in a to-
tal of 71 libraries: grew_over_time (𝑛 = 13), adopted_and_abandoned
(𝑛 = 3), grew_and_dropped (𝑛 = 1), removed_over_time (𝑛 = 3),
removed_and_rebounded (𝑛 = 1), constant (𝑛 = 41), and no_pattern
(𝑛 = 9). For each selected library, we access its repository on GitHub
and use the repository search function to locate the keywords “type,”
“type hints,” “hint,” “annotation,” or “type annotations.” We then
manually review the Issues, Pull Requests, Discussions, and Com-
mits sections using the filters provided on the left-hand sidebar.

For each pull request, we first review the title and, when com-
ments are present, open the pull request to read them. When the
content is relevant, we document the package name and corre-
sponding notes, including a link to the relevant pull request, issue,
discussion, or commit.

We also examine the library’s evolution graph to identify dates
that may warrant closer inspection of commits during the review
process. We then collate all notes into a spreadsheet, provided in
the artifacts, for each library and perform open coding, grouping
the reasons into categories.

Conference’17, July 2017, Washington, DC, USA Eric Asare and Sarah Nadi

Figure 3: Evolution trends of representative libraries illustrating each adoption pattern.

Algorithm 1 Evolution Trend Analysis

1: Input: Annotation percentages 𝐴 = [𝐴𝑛𝑛1, 𝐴𝑛𝑛2, . . . , 𝐴𝑛𝑛𝑛]
2: Output: Classification of trend of Library 𝐿
3: 𝑚𝑎𝑥 ← maxAdoption(𝐴)
4: if 𝐴𝑛𝑛𝑛 < 0.2 ×𝑚𝑎𝑥 then
5: return Adopted and Abandoned
6: else
7: 𝜎 ← std(𝐴)
8: 𝑀𝐾_𝑡𝑟𝑒𝑛𝑑 ← Mann–Kendall(𝐴)
9: 𝑠 ← linearRegressionSlope(𝐴[last 25%])
10: if 𝜎 ≤ 5 then
11: return Constant
12: else if (𝑀𝐾_𝑡𝑟𝑒𝑛𝑑 = increasing and 𝑠 < −1) then
13: return Grew and Dropped
14: else if (𝑀𝐾_𝑡𝑟𝑒𝑛𝑑 = decreasing and 𝑠 > 1) then
15: return Removed and Rebounded
16: else if (𝑀𝐾_𝑡𝑟𝑒𝑛𝑑 = increasing and 𝑠 ≥ 0 or 𝑀𝐾_𝑡𝑟𝑒𝑛𝑑 =

no trend and 𝑠 > 1) then
17: return Grew Over Time
18: else if (𝑀𝐾_𝑡𝑟𝑒𝑛𝑑 = decreasing and 𝑠 ≤ 0 or𝑀𝐾_𝑡𝑟𝑒𝑛𝑑 =

no trend and 𝑠 < −1) then
19: return Removed Over Time
20: else
21: return No Pattern
22: end if
23: end if

Results. We run Algorithm 1 on 5,014 adopting libraries with at
least four releases. Table 3 summarizes the number of libraries in
each evolution pattern. We now discuss each pattern listed in the
table and refer to an illustrative example from Figure 3.

More than half of the libraries (59.91%) exhibit relatively constant
annotation adoption across the examined releases (e.g., pytest [40]).
A small proportion of libraries (4.13%) initially adopted annotations
but abandoned more than 80% of their maximum coverage by the
latest release (e.g., fastai [18]). In contrast, a larger proportion of
libraries (17.65%) show annotation adoption that increases over time
(e.g., flask [38]), although a small fraction (0.90%) initially grew and
then experienced a decline in coverage in the most recent release
(e.g., emoji [23]). Over time, 3.87% of libraries consistently removed
annotations (e.g., svgelements [49]), while 0.42% rebounded after an
initial period of removal (e.g., yamlfix [26]). Finally, our quantitative
analysis did not reveal clear patterns for 13.12% of the libraries (e.g.,
xeno [34]).

Our qualitative analysis reveals that most commits/Issues/PRs
changing annotations do not provide rationale for the majority of
the packages. We find explicit rationales for adding annotations
in only 15 repositories. We discuss the common rationales with
examples:
• Linting: In icmplib and Snakemake, pull requests cited type anno-
tations for better linting and editor support; one Snakemake PR
added type hints for some classes to fully utilize modern editor
code prompts [17].
• Documentation: In Squidpy and syspathmodif, type hints re-
placed type information previously in docstrings. A recent issue
in syspathmodif stated “Docstrings indicate the type of parameters

How do third-party Python libraries use type annotations? Conference’17, July 2017, Washington, DC, USA

Table 3: Distribution of libraries across annotation adoption
evolution patterns.

Pattern Number of Libraries

Adopted and Abandoned 207 (4.13%)
Grew over Time 885 (17.65%)
Grew and Dropped 45 (0.90%)
Removed over Time 194 (3.87%)
Removed and Rebounded 21 (0.42%)
Constant 3,004 (59.91%)
No Pattern 658 (13.12%)

Total Libraries 5,014 (100%)

and return values. Instead, type hints must fulfill that role.” This
issue was closed via a PR adding type hints [14].
• Fixing static errors: In Scalene, type hints were added to “mol-
lify,” “pacify,” and “appease”mypy, reflecting reactive adoption [1].
In Kanjize, an open issue prompted a fix for a Pylance mismatch
error, though the code ran correctly [54]
• Code clarity: In wc-api-python and Snakemake, developers in-
troduced type hints “for better development experience” [33] or
“to understand the logging system better” [21], highlighting their
role in improving readability and maintainability.
Explicit reasons for removing type hints were rare. In Scalene, a

type hintwas removed for causing an error [47], while in Blacksmith,
hints were dropped for being unnecessary [27].

On the other hand, we do see that library users sometimes re-
quested annotations: inMXNet, to prevent bugs [20], and in XBlock,
to improve code clarity in its abstract design [28]. Type hints also
revealed overlooked design flaws. A Squidpy developer remarked,
“Thanks! I didn’t look closely enough; more reasons why types are
useful,” [3] acknowledging how type annotations can clarify code.
In other cases, missing hints or autocompletion highlighted API
misuse, showing that type annotations can guide correct usage.

Discussion. Our quantitative results reveal six patterns in anno-
tation evolution. Prior work [7] reports that developers add anno-
tations regularly, in a sprint-like effort, or occasionally. We also
observe that most libraries maintain relatively stable annotation
coverage or show gradual growth over time. We also uncover sev-
eral patterns not previously documented: some libraries initially
grow in annotation coverage but later abandon up to 80% of their
annotations, while others remove annotations gradually over time.
While we could not find explicit reasons for why some libraries
abandoned annotations, our qualitative analysis shows that some
libraries adopt type annotations mainly to improve linting, code
clarity, documentation, and fix static errors. It was interesting to
see that type annotations also reveal blind spots, uncover bugs, and
expose API misuse, reinforcing that type hints can enhance the
client developer’s experience in using the library.

RQ2 Summary: The majority of libraries (59.91%) maintain a con-
stant level of annotation coverage over time, while 17.65% gradu-
ally grow their annotation coverage. Few libraries abandon anno-
tation. Reasons for annotation adoption include improved linting,
code clarity, documentation, and fixing static errors. Type hints
can also reveal design flaws and client API misuse.

7 RQ3: Which functions do developers
prioritise annotating?

Methods. In this RQ, we focus on the 9,190 libraries that have
adopted annotations in their latest release (see Table 1 from RQ1).
For each library, we calculate the proportion of public functions
that are annotated and the proportion of private functions that are
annotated. To further investigate whether libraries prioritize public
versus private functions, we compute a prioritization ratio for
each library:

prioritization_ratio(p) = percent of public functions annotated
percent of private functions annotated

We then categorize libraries based on this ratio:
• ratio > 1: library prioritizes the annotation of public func-
tions (Public Prioritized)
• ratio < 1: library prioritizes the annotation of private func-
tions (Private Prioritized)
• ratio = 1: library annotates public and private functions
roughly equally (Equal)

We also study the usage of the type Any in the existing type
annotations. Type hints are meant to communicate the expected
input and output of a function, so using Any conveys little informa-
tion to readers or IDEs. Moreover, static type checkers allow any
operation on values typed as Any, reducing their ability to detect
type mismatches. Therefore, we determine how often Any is used
versus more specific types, and whether that differs between private
and public functions. Specifically, for each library, we compute the
proportion of parameters that appear in private annotated func-
tions that are typed as Any, as well as the proportion of the return
types of these functions that are typed as Any. We calculate similar
proportions for the annotated public functions of the library.

Results. Figure 4 compares the distribution of type annotation
coverage between public and private functions across all 9,190
adopting libraries. We find that private functions show a higher
median coverage (36.8%) compared to public functions (14.1%). This
difference is statistically significant, as confirmed by the Mann–
Whitney U test (𝑝 = 3.29𝑒 − 181, one-sided).

Examining the priority ratio further supports this observation.
Figure 5 shows that 63.35% of libraries prioritize annotating pri-
vate functions, compared to only 26.8% that prioritize public func-
tions. requests is one example of a Private Prioritized library, with
𝑝ratio = 0.11, whereas pytest exemplifies a Public Prioritized library
with 𝑝ratio = 93.30. The remaining 9.85% of libraries annotate both
categories equally, with humanize being one such example. Overall,
our results indicate that libraries are more likely to annotate their
private functions before their public ones.

Conference’17, July 2017, Washington, DC, USA Eric Asare and Sarah Nadi

Figure 4: Coverage differences between private and public
functions across all libraries.

Figure 5: Distribution of function type prioritization

We next look at the prevalence of the Any type in private vs.
public annotated functions, across the libraries. Among annotated
private functions, only a small proportion of parameters are an-
notated with Any, with a median of 0% and a mean of 5.83%. A
similarly small proportion of the return types of private functions
are annotated with Any, with a median of 0% and a mean of 12.97%.
For annotated public functions, the proportion of parameters an-
notated with Any is slightly higher, with a median of 2.33% and a
mean of 6.12%, while the proportion of return types annotated with
Any has a median of 0% and a mean of 6.99%. Overall, we find that
Any annotations are uncommon, indicating that developers spar-
ingly use Any in function annotations across libraries, regardless of
whether they are private or public.

Discussion. Contrary to our initial expectations, library devel-
opers generally prioritize annotating private (internal) functions
over public (client-facing) functions. This trend suggests that devel-
opers focus first on ensuring internal correctness, maintainability,
and safe refactoring, before extending typing to functions exposed
to external clients. Consequently, client-facing benefits such as
improved IDE autocompletion, static type checking, and discover-
ability may only be realized later. The analysis of Any usage shows
that it is rare for both parameters and return types. This indicates
that when library developers annotate, they use more specific types,
enhancing type safety and the effectiveness of static type checkers.

RQ3 Summary: Developers tend to prioritize annotating private
(internal) functions over public (client-facing) functions. Very
few libraries achieve roughly equal annotation across public and
private functions. The usage of Any is rare, indicating that when
annotations are applied, developers use specific types.

8 Implications
We discuss the implications of our results for multiple stakeholders
in the Python ecosystem.

Library developers. The starting point of our work is the common
argument that annotations are useful. Accordingly, we contrast this
“theoretical desire” with what happens in practice in third-party li-
braries. We find that the majority of libraries (83.39%) have adopted
annotations, yet their average coverage remains below half (34.55%)
of their functions. Moreover, 37.8% of these libraries have anno-
tated no more than 10% of their functions. Our results provide an
empirical motivation for library developers to continue improv-
ing annotation coverage rather than plateauing after adoption, as
59.91% of the libraries currently do. Additionally, to enhance IDE
support and improve type safety for client developers, library main-
tainers should consider increasing annotation coverage for public
functions. This may imply the need for more work on automatically
generating annotations as a means of helping library developers
increase their coverage.

Client developers. We observe that a small fraction (4.13%) of
libraries have adopted and subsequently abandoned annotations.
Since these type annotations can improve library usage ease and
stability, client developers can then use them as an additional se-
lection criteria for when to select or replace a library. They may
consider switching to functionally similar packages with a higher
and more stable annotation adoption rate to benefit from improved
static analysis and early bug detection. For users who cannot easily
switch, we recommend checking for available stub files on Type-
shed or PyPI that they can install to supplement the package with
type information.

Community contributors. Companies such as Meta [31], which
are committed to open source initiatives like PyTorch [30] and
collaborate with Quansight [43] to advance type annotation sup-
port [9, 53], can use our dataset and findings to prioritize libraries
with lower annotation coverage, which may strengthen the ecosys-
tem’s overall type completeness. At the ecosystem level, tools such
as PyPI could require developers to measure and display annotation
coverage (similar to test coverage) as ways to indicate the quality
of their library. Additionally, these badges/displays can further dis-
tinguish between annotation coverage of private and client-facing
function coverage as well as the proportion of Any types. Finally,
community contributors can improve the annotation coverage rate
of low adopting libraries by submitting annotation stubs to Type-
shed or by raising annotation-related pull requests in the respective
library repositories.

Researchers. Ourwork provides insights into the adoption of type
annotations and their use in private versus public APIs. Researchers
studying API misuse could leverage our dataset to examine whether

How do third-party Python libraries use type annotations? Conference’17, July 2017, Washington, DC, USA

libraries with lower annotation coverage exhibit higher rates of API
misuse, as prior work suggests that the addition of type annotations
may help reduce such misuse [16]. As future work, we plan to
investigate the impact of type annotation quality on downstream
client projects.

9 Threats to Validity
Construct Validity. When measuring evolution patterns, we con-

sider only major and minor releases. This decision may result in a
smaller subset of versions for some libraries, potentially missing
annotation changes introduced in patch releases. However, this is
unlikely to affect our findings because, according to the Semantic
Versioning 2.0.0 specification [39], patches are typically reserved
for backwards-compatible bug fixes. Even for packages that do not
strictly follow semantic versioning, we would capture any annota-
tion changes introduced in patch releases in the subsequent minor
or major release that we include in our analysis.

Precisely identifying client facing APIs in Python is a challenge,
because the distinction between public and private functions is
not formally defined with access modifiers. We rely on Pyright’s
internal logic, which follows Python’s naming conventions. Con-
sequently, libraries that do not follow these conventions may be
misclassified. Given that the packages in our dataset are marked
as stable, production ready, or mature, we believe that it is unlikely
that they do not follow these conventions.

Finally, we analyze libraries that include annotations bundled
within their distributed package, as this reflects what end users
and static analysis tools have access to upon installation. Anno-
tations may also be available through separate stub packages or
from the Typeshed repository. Even though it is rare for packages
to distribute their annotations externally (only 0.2% of 688,284 PyPi
packages have names starting with types- or end with -stubs5),
we acknowledge that our reported annotation coverage can be
interpreted as a lower bound.

Internal Validity.We use Pyright [32] for both annotation extrac-
tion and the identification of public and private functions. Conse-
quently, the accuracy of our analysis depends on Pyright’s precision.
Pyright is developed by Microsoft and has been empirically shown
to achieve the highest recall (74.55%) and F1 score (57.95%) in de-
tecting type-related errors among major Python type checkers such
as Pyre, Pytype, and MyPy [25]. While this evaluation focuses on
type-error detection, it suggests that Pyright performs robust static
analysis of Python code, which underlies our annotation extrac-
tion process. Moreover, Pyright’s –verifytypes feature has been
adopted in large-scale community efforts to raise NumPy’s public
API annotation completeness from 33% to nearly 90% [13], provid-
ing further evidence of its practical effectiveness in analyzing and
validating type annotations.

We use the last 25% of releases to capture recent trends; however,
because release cycles vary substantially across libraries, any fixed
definition of recency, whether based on time or a fixed number of
releases, has inherent limitations. We do not require the recent-
trend slope to be statistically significant or to exceed a goodness-of-
fit threshold. Although such constraints are common in regression

5We query the names of all packages using the PyPI simple API: https://pypi.org/
simple/

analysis, experimenting with including them revealed that it results
in stricter categorization that has inconsistencies with what we
observe in the evolution graphs. Accordingly, we consider only
the magnitude and direction of the slope to characterize the recent
trend in our analysis since we found this more effective in practice.

External Validity. The number of data points in our qualitative
analysis of evolution patterns is limited due to the manual effort
required. Analyzing each data point requires approximately one
hour. Accordingly, we chose the smaller confidence levels to make
the analysis feasible (a 95% confidence level with a 5% error margin
requires 286 additional libraries, i.e., 286 additional hours of manual
analysis). We acknowledge that the reasons we find for adoption/a-
bandonment may not fully generalize to the broader population.
In addition, we focus on Python and third-party libraries, so our
results may not generalize to other dynamic languages such as
JavaScript.

10 Conclusion
In this paper, we conduct an empirical study to understand how
third-party libraries on PyPI use type annotations. We analyzed
76,327 versions across 11,021 libraries. Our analysis shows that most
libraries (83.39%) have adopted annotations, with amedian coverage
of 19.68%. We identified six distinct annotation adoption patterns,
with 59.91% of libraries maintaining stable annotation coverage and
17.65% showing gradual growth. We observed developers adopting
type annotations to improve code clarity, linting, documentation,
and static analysis but may remove annotations if they lead to more
errors. However, fewer than 10% of libraries removed annotations
after adopting them.We also found that developers tend to prioritize
annotating private functions.

We recommend that client developers, library maintainers, and
community contributors collaborate to increase type annotation
coverage across the Python ecosystem. Researchers, on the other
hand, can use our dataset as a foundation for future work, such
as investigating whether clients of libraries with lower annotation
coverage exhibit higher API misuse.

Acknowledgments
This research was carried out using the High Performance Com-
puting resources at New York University Abu Dhabi. We thank Dr.
Luca Di Grazia for his helpful comments on earlier drafts of this
work. We acknowledge the use of GenAI (GitHub Copilot, Cursor,
ChatGPT, and Gemini) for assistance with coding parts of our data
analysis scripts, as well as for minor grammar and spelling editorial
support.

References
[1] Emery Berger. 2024. Types to mollify mypy; fixed an apparent typo-bug in signal

handling. https://github.com/plasma-umass/scalene/pull/825. Merged May 17,
2024.

[2] Stephen Cass. 2025. The Top Programming Languages 2025. https://spectrum.
ieee.org/top-programming-languages-2025 Accessed: 2025-10-14.

[3] chaichontat. 2022. Add type stubs to datasets. https://github.com/scverse/
squidpy/pull/480. Merged March 16, 2022.

[4] Zhifei Chen, Yanhui Li, Bihuan Chen, Wanwangying Ma, Lin Chen, and Baowen
Xu. 2020. An Empirical Study on Dynamic Typing Related Practices in Python
Systems. In Proceedings of the 28th International Conference on Program Com-
prehension (Seoul, Republic of Korea) (ICPC ’20). Association for Computing
Machinery, New York, NY, USA, 83–93. https://doi.org/10.1145/3387904.3389253

https://pypi.org/simple/
https://pypi.org/simple/
https://github.com/plasma-umass/scalene/pull/825
https://spectrum.ieee.org/top-programming-languages-2025
https://spectrum.ieee.org/top-programming-languages-2025
https://github.com/scverse/squidpy/pull/480
https://github.com/scverse/squidpy/pull/480
https://doi.org/10.1145/3387904.3389253

Conference’17, July 2017, Washington, DC, USA Eric Asare and Sarah Nadi

[5] Yiu Wai Chow, Luca Di Grazia, and Michael Pradel. 2024. PyTy: Repairing
Static Type Errors in Python. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering (Lisbon, Portugal) (ICSE ’24). Association
for Computing Machinery, New York, NY, USA, Article 87, 13 pages. https:
//doi.org/10.1145/3597503.3639184

[6] William G. Cochran. 1977. Sampling Techniques (3 ed.). John Wiley & Sons, New
York.

[7] Luca Di Grazia and Michael Pradel. 2022. The evolution of type annotations in
python: an empirical study. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(Singapore, Singapore) (ESEC/FSE 2022). Association for Computing Machinery,
New York, NY, USA, 209–220. https://doi.org/10.1145/3540250.3549114

[8] PyPI Docs. [n. d.]. PyPI BigQuery API Documentation. https://docs.pypi.org/api/
bigquery/. Accessed: 2025-10-22.

[9] Meta Engineering. 2025. Enhancing the Python ecosystem with type checking
and free threading. https://engineering.fb.com/2025/05/05/developer-tools/
enhancing-the-python-ecosystem-with-type-checking-and-free-threading/ Ac-
cessed: 2025-10-14.

[10] Facebook. 2018. Pyre: Static Type Checker for Python. https://pyre-check.org/.
[11] Google. 2012. Pytype: Static Type Analyzer for Python. https://github.com/

google/pytype. Infers types without requiring annotations; support until Python
3.12.

[12] Google Cloud. [n. d.]. BigQuery. https://cloud.google.com/bigquery.
[13] Marco Gorelli and Quansight Labs. 2025. Bringing NumPy’s type-completeness

score to nearly 90%. Blog post, Pyrefly. https://pyrefly.org/blog/numpy-type-
completeness/ Accessed: 2025-10-14.

[14] GRV96. 2025. Type hints. https://github.com/GRV96/syspathmodif/issues/22.
Opened 2025-09-16.

[15] Yimeng Guo, Zhifei Chen, Lin Chen, Wenjie Xu, Yanhui Li, Yuming Zhou, and
Baowen Xu. 2024. Generating Python Type Annotations from Type Inference:
How Far Are We? ACM Trans. Softw. Eng. Methodol. 33, 5, Article 123 (June 2024),
38 pages. https://doi.org/10.1145/3652153

[16] Xincheng He, Xiaojin Liu, Lei Xu, and Baowen Xu. 2023. How Dynamic Features
Affect API Usages? An Empirical Study of API Misuses in Python Programs. In
2023 IEEE International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). 522–533. https://doi.org/10.1109/SANER56733.2023.00055

[17] Hocnonsense. 2023. Add type hints to core codebase. https://github.com/
snakemake/snakemake/pull/2375.

[18] Jeremy Howard and Sylvain Gugger. 2017. fastai: A Layered API for Deep
Learning. https://github.com/fastai/fastai. GitHub repository.

[19] Md. Hussain and Ishtiak Mahmud. 2019. pyMannKendall: a python package
for non parametric Mann Kendall family of trend tests. Journal of Open Source
Software 4, 39 (25 7 2019), 1556. https://doi.org/10.21105/joss.01556

[20] jaanli. 2017. Python stubs for static type checking. https://github.com/apache/
mxnet/issues/8359. Opened October 20, 2017.

[21] jlumpe. 2025. Add type annotations in logging module. https://github.com/
snakemake/snakemake/pull/3757. Merged October 1, 2025.

[22] Faizan Khan, Boqi Chen, Daniel Varro, and Shane McIntosh. 2022. An Empirical
Study of Type-Related Defects in Python Projects. IEEE Transactions on Software
Engineering 48, 8 (2022), 3145–3158. https://doi.org/10.1109/TSE.2021.3082068

[23] Taehoon Kim. 2014. emoji: Emoji terminal output for Python. https://github.
com/carpedm20/emoji. GitHub repository.

[24] Leslie Kish. 1965. Survey Sampling. John Wiley & Sons, New York.
[25] Xinrong Lin, Baojian Hua, Yang Wang, and Zhizhong Pan. 2023. Towards a

Large-Scale Empirical Study of Python Static Type Annotations. In 2023 IEEE In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER).
414–425. https://doi.org/10.1109/SANER56733.2023.00046

[26] lyz code. 2020. yamlfix: A simple opinionated yaml formatter that keeps your
comments. https://github.com/lyz-code/yamlfix. GitHub repository.

[27] Mardiros. 2022. Refactor typing annotations. https://github.com/mardiros/
blacksmith/commit/3ab2aed8f24e134db23ef194bdebaf94630f63af. Commit
3ab2aed8f24e134db23ef194bdebaf94630f63af.

[28] Kyle McCormick. 2024. Add type hints and check them in CI. https://github.com/
openedx/XBlock/issues/707. Opened January 12, 2024.

[29] Meta (Facebook). 2025. Pyrefly: Fast Static Type Checker and IDE for Python.
https://github.com/facebook/pyrefly. Version 0.36.0, released October 2025.

[30] Meta Open Source. 2025. PyTorch. https://opensource.fb.com/projects/pytorch.
Accessed: 2025-10-14.

[31] Meta Platforms, Inc. 2025. Meta Platforms, Inc. https://about.meta.com. Accessed:
2025-10-14.

[32] Microsoft. 2019. Pyright: Static Type Checker for Python. https://github.com/
microsoft/pyright.

[33] MilmanRonV. 2024. Added Response type hint to API’s request method. https:
//github.com/woocommerce/wc-api-python/pull/81. Merged May 17, 2024.

[34] Lain Musgrove. 2017–2025. xeno: The Python dependency injector from outer
space. https://github.com/lainproliant/xeno. GitHub repository, Python depen-
dency injection framework.

[35] Mypy Developers. 2012. Mypy: Optional Static Typing for Python. http://mypy-
lang.org/.

[36] Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massimiliano Di Penta.
2020. CrossRec: Supporting software developers by recommending third-party
libraries. Journal of Systems and Software 161 (2020), 110460. https://doi.org/10.
1016/j.jss.2019.110460

[37] Wonseok Oh and Hakjoo Oh. 2024. Towards Effective Static Type-Error Detection
for Python. In Proceedings of the 39th IEEE/ACM International Conference on
Automated Software Engineering (Sacramento, CA, USA) (ASE ’24). Association
for Computing Machinery, New York, NY, USA, 1808–1820. https://doi.org/10.
1145/3691620.3695545

[38] Pallets. 2010. Flask: The Python micro framework for building web applications.
https://github.com/pallets/flask. GitHub repository.

[39] Tom Preston-Werner. 2013. Semantic Versioning 2.0.0. https://semver.org/.
Accessed: 2025-10-15.

[40] pytest dev. 2010. pytest: the pytest testing framework. https://github.com/pytest-
dev/pytest. GitHub repository.

[41] Python Software Foundation. [n. d.]. Python Package Index (PyPI). https://pypi.
org/.

[42] Python Typeshed Contributors. 2025. Typeshed: Collection of Python Library
Stubs. https://github.com/python/typeshed.

[43] Quansight. 2025. Quansight. https://quansight.com/. Accessed: 2025-10-14.
[44] Ingkarat Rak-amnouykit, Daniel McCrevan, Ana Milanova, Martin Hirzel, and

Julian Dolby. 2020. Python 3 types in the wild: a tale of two type systems. In
Proceedings of the 16th ACM SIGPLAN International Symposium on Dynamic
Languages (Virtual, USA) (DLS 2020). Association for Computing Machinery,
New York, NY, USA, 57–70. https://doi.org/10.1145/3426422.3426981

[45] Ethan Smith, Jukka Lehtosalo, and Michael Sullivan. 2018. PEP 561 – Distributing
and Packaging Type Information. https://peps.python.org/pep-0561/. Python
Enhancement Proposal 561.

[46] Stack Overflow. 2025. Technology | 2025 Stack Overflow Developer Survey. https:
//survey.stackoverflow.co/2025/technology/#most-popular-technologies. Ac-
cessed: 2025-10-14.

[47] Sam Stern. 2021. Type hint was removed for causing an error. https://github.com/
plasma-umass/scalene/commit/ea560ff5d48cbf22976ddb4110df0d9ac850d4c8.
Commit ea560ff5d48cbf22976ddb4110df0d9ac850d4c8.

[48] Ke Sun, Yifan Zhao, Dan Hao, and Lu Zhang. 2023. Static Type Recommendation
for Python. In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering (Rochester, MI, USA) (ASE ’22). Association
for Computing Machinery, New York, NY, USA, Article 98, 13 pages. https:
//doi.org/10.1145/3551349.3561150

[49] Tatarize. 2019. svgelements: SVG Parsing for Elements, Paths, and other SVG
Objects. https://github.com/meerk40t/svgelements. GitHub repository.

[50] TIOBE Software. 2025. TIOBE Index for October 2025. https://www.tiobe.com/
tiobe-index/. Accessed: 2025-10-14.

[51] Guido Van Rossum, Jukka Lehtosalo, and Łukasz Langa. 2014. PEP 484 - Type
Hints. https://peps.python.org/pep-0484/. Python Enhancement Proposal.

[52] Wenjie Xu, Lin Chen, Chenghao Su, Yimeng Guo, Yanhui Li, Yuming Zhou, and
Baowen Xu. 2023. HowWell Static Type Checkers Work with Gradual Typing? A
Case Study on Python. In 2023 IEEE/ACM 31st International Conference on Program
Comprehension (ICPC). 242–253. https://doi.org/10.1109/ICPC58990.2023.00039

[53] Danny Y. 2025. Call For Suggestions: Nominate Python Packages for Typing
Improvements. https://discuss.python.org/t/call-for-suggestions-nominate-
python-packages-for-typing-improvements/80186 Accessed: 2025-10-14.

[54] yahiro code. 2025. Return type may be incorrect. https://github.com/nagataaaas/
Kanjize/issues/9. Opened May 3, 2025.

[55] Asimina Zaimi, Apostolos Ampatzoglou, Noni Triantafyllidou, Alexander Chatzi-
georgiou, Androklis Mavridis, Theodore Chaikalis, Ignatios Deligiannis, Pana-
giotis Sfetsos, and Ioannis Stamelos. 2015. An Empirical Study on the Reuse of
Third-Party Libraries in Open-Source Software Development. In Proceedings of
the 7th Balkan Conference on Informatics Conference (Craiova, Romania) (BCI ’15).
Association for Computing Machinery, New York, NY, USA, Article 4, 8 pages.
https://doi.org/10.1145/2801081.2801087

[56] Jelle Zijlstra. 2024. PEP 749 – Implementing PEP 649. https://peps.python.org/pep-
0749/. Python Enhancement Proposal 749.

https://doi.org/10.1145/3597503.3639184
https://doi.org/10.1145/3597503.3639184
https://doi.org/10.1145/3540250.3549114
https://docs.pypi.org/api/bigquery/
https://docs.pypi.org/api/bigquery/
https://engineering.fb.com/2025/05/05/developer-tools/enhancing-the-python-ecosystem-with-type-checking-and-free-threading/
https://engineering.fb.com/2025/05/05/developer-tools/enhancing-the-python-ecosystem-with-type-checking-and-free-threading/
https://pyre-check.org/
https://github.com/google/pytype
https://github.com/google/pytype
https://cloud.google.com/bigquery
https://pyrefly.org/blog/numpy-type-completeness/
https://pyrefly.org/blog/numpy-type-completeness/
https://github.com/GRV96/syspathmodif/issues/22
https://doi.org/10.1145/3652153
https://doi.org/10.1109/SANER56733.2023.00055
https://github.com/snakemake/snakemake/pull/2375
https://github.com/snakemake/snakemake/pull/2375
https://github.com/fastai/fastai
https://doi.org/10.21105/joss.01556
https://github.com/apache/mxnet/issues/8359
https://github.com/apache/mxnet/issues/8359
https://github.com/snakemake/snakemake/pull/3757
https://github.com/snakemake/snakemake/pull/3757
https://doi.org/10.1109/TSE.2021.3082068
https://github.com/carpedm20/emoji
https://github.com/carpedm20/emoji
https://doi.org/10.1109/SANER56733.2023.00046
https://github.com/lyz-code/yamlfix
https://github.com/mardiros/blacksmith/commit/3ab2aed8f24e134db23ef194bdebaf94630f63af
https://github.com/mardiros/blacksmith/commit/3ab2aed8f24e134db23ef194bdebaf94630f63af
https://github.com/openedx/XBlock/issues/707
https://github.com/openedx/XBlock/issues/707
https://github.com/facebook/pyrefly
https://opensource.fb.com/projects/pytorch
https://about.meta.com
https://github.com/microsoft/pyright
https://github.com/microsoft/pyright
https://github.com/woocommerce/wc-api-python/pull/81
https://github.com/woocommerce/wc-api-python/pull/81
https://github.com/lainproliant/xeno
http://mypy-lang.org/
http://mypy-lang.org/
https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1016/j.jss.2019.110460
https://doi.org/10.1145/3691620.3695545
https://doi.org/10.1145/3691620.3695545
https://github.com/pallets/flask
https://semver.org/
https://github.com/pytest-dev/pytest
https://github.com/pytest-dev/pytest
https://pypi.org/
https://pypi.org/
https://github.com/python/typeshed
https://quansight.com/
https://doi.org/10.1145/3426422.3426981
https://peps.python.org/pep-0561/
https://survey.stackoverflow.co/2025/technology/#most-popular-technologies
https://survey.stackoverflow.co/2025/technology/#most-popular-technologies
https://github.com/plasma-umass/scalene/commit/ea560ff5d48cbf22976ddb4110df0d9ac850d4c8
https://github.com/plasma-umass/scalene/commit/ea560ff5d48cbf22976ddb4110df0d9ac850d4c8
https://doi.org/10.1145/3551349.3561150
https://doi.org/10.1145/3551349.3561150
https://github.com/meerk40t/svgelements
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://peps.python.org/pep-0484/
https://doi.org/10.1109/ICPC58990.2023.00039
https://discuss.python.org/t/call-for-suggestions-nominate-python-packages-for-typing-improvements/80186
https://discuss.python.org/t/call-for-suggestions-nominate-python-packages-for-typing-improvements/80186
https://github.com/nagataaaas/Kanjize/issues/9
https://github.com/nagataaaas/Kanjize/issues/9
https://doi.org/10.1145/2801081.2801087
https://peps.python.org/pep-0749/
https://peps.python.org/pep-0749/

	Abstract
	1 Introduction
	2 Background and Terminology
	3 Related Work
	4 Empirical Study Setup
	4.1 Studied Libraries
	4.2 Annotation Extraction

	5 RQ1: What is the current adoption rate of type annotations in third-party libraries?
	6 RQ2: What are the evolution patterns of annotation adoption?
	7 RQ3: Which functions do developers prioritise annotating?
	8 Implications
	9 Threats to Validity
	10 Conclusion
	Acknowledgments
	References

