
FeedBaG: An Interaction Tracker for Visual Studio
Sven Amann, Sebastian Proksch, and Sarah Nadi

Software Technology Group
Technische Universität Darmstadt

Email: {amann,proksch,nadi}@cs.tu-darmstadt.de

Abstract—Integrated Development Environments (IDEs) pro-
vide a convenient standalone solution that supports developers
during various phases of software development. In order to
provide better support for developers within such IDEs, we
need to understand how developers use them. To infer useful
conclusions, such information should be gathered for different
types of IDEs, for different programming languages, and in
different development settings.

In this paper, we present FEEDBAG, an extension for Visual
Studio that tracks developers’ interactions with the IDE. FEED-
BAG generates a rich stream of interaction events and provides
means for developers to review and submit the data to a server.
We recently used the tool in a study, recording more than 6,300
hours of work time. Future studies with different user groups
are needed to explore and compare IDE-usage aspects, like
code-comprehension assistance, in detail. Therefore, we publish
FEEDBAG and encourage other researchers to use it as well.

I. INTRODUCTION

Integrated Development Environments (IDEs) are very pop-
ular among software developers since they provide support
for many of their daily development or maintenance tasks.
Modern IDEs provide tools such as specialized code search,
task-sensitive views, or quick-peek previews to help developers
navigate and comprehend source code. In order to advance this
assistance, we need empirical data on how developers use it
and how different tools impact this use.

Previous studies investigated developers’ use of IDEs [1]–
[4]. These studies looked at Java development in Eclipse
and Smalltalk development in the Pharo IDE. Recently, we
extended this space of knowledge by a large-scale study on
the usage of C# development in Visual Studio [5]. We analyzed
over 6,300 hours of work time to investigate typical activities
and tool usage. We observed that navigation likely indicates a
need for code comprehension and identified opportunities by
comparing usage patterns between IDEs.

To track how developers use Visual Studio, we developed
FEEDBAG, an extension that instruments the IDE and records
developers’ interactions with it. FEEDBAG is publicly avail-
able for any developer to use and is open source. Links to the
tool and related material are available on our artifact page [6].

We proceed as follows: Section II describes how FEEDBAG
instruments Visual Studio, how it addresses privacy concerns,
and how developers submit their data. Section III discusses
applications of the tool and Section IV presents related tools.

II. FEEDBAG

To collect information about interactions of developers with
Visual Studio, we instrument the IDE. We do this through

ReSharper (R#) [7], a widely used Visual Studio extension.
R# is designed as an extensible platform. It provides access to
a semantic model of the source code under edit, including, for
example, a type-resolved abstract syntax tree. We implemented
FEEDBAG as a R# plugin that generates interaction events and
allows users to manage them.

FEEDBAG consist of three parts: The Event Generator in-
struments the IDE and records developers’ interactions with it.
The Event Manager allows developers to review and manage
the recorded interactions and to upload them to our server. The
Server receives, checks, and stores developers’ submissions.
We subsequently discuss these three components.

A. Event Generator

The Event Generator hooks into every User Interface (UI)
control, executable command, window, and editor in Visual
Studio and into some system-level events. Whenever the
developer interacts with one of these elements, the generator
creates an event and stores it on her machine. This process
does not interfere with IDE functionality. Each event captures:
Timing When the event started and, if it takes some time to
finish (e.g., when a project is built), its duration.
Trigger Whether the event is triggered by a mouse click, a
shortcut, while typing, or automatically.
Location The active window and –if available– the active
document at the point of the event’s generation.
Type Specific information depending on the interaction:

Activity: When the user moves the mouse or scrolls, we
record this activity.
Build: When the user runs a build, we capture the target
projects, the build duration, and whether it succeeds.
Code Completion: When the user activates the code com-
pletion, we capture the proposals, the invocation context,
and detailed interactions, like the selection.
Commands: When the user invokes a command, be it native
(e.g., save file) or offered by an extension (e.g., R#’s quick
fixes), we capture that command’s unique Id.
Debugger: When the user starts or stops the debugger, or
when it hits a breakpoint.
Documents: When the user opens, edits, saves, or closes
a document, e.g. a source file, we capture which of these
actions she performed and the document’s name. To reduce
the number of edit events, we aggregate edits to the same
document if less than two seconds pass between them. This
results in one aggregated event whose duration is the time
that elapsed between the first and the last aggregated edit.



Navigation: When the user navigates the code base, e.g.,
when she ctrl-clicks in the source, we capture the code
context and what she clicked on.
Test Runs: When the user runs tests, we capture for each
test how long it took and weather it passed.
System: When the user locks the screen, the screensaver
activates, the machine hibernates, or the machine wakes
from any of these states, we capture a respective event.
Version Control: When the user uses version control, e.g.,
when she commits her changes, we capture the respective
action. By monitoring Git’s ref-log, we do this even if the
user uses an IDE-external tool.
Windows: When the user opens, closes, or switches between
windows, we capture the window’s title and which of these
actions she performed. We do the same for Visual Studio’s
main window to identify when the user started, left from,
returned to, or closed the IDE.

B. Event Manager

A developer’s interactions with her IDE reveal sensitive
information, such as work times or tasks. To encourage
participation, we want developers to comprehend and control
what FEEDBAG collects. Therefore, the Event Manager allows
them to view and delete, but not alter, stored events via the
UI shown in Figure 1. Though deletion is a threat to validity,
we deem it very unlikely that developers systematically delete
individual events in the huge event stream. They are more
likely to delete entire days, which is equivalent to simply
deactivating FEEDBAG for that day. The Event Manager
displays the interactions recorded by the Event Generator in
realtime. This allows us to demonstrate FEEDBAG’s activity,
even though it generally works transparent to the user.

Events are stored locally on the developer’s machine. She is
regularly informed about how many events were generated and
asked to upload them. This simple guided process is the only
user action FEEDBAG requires. Once the developer decides
to provide her data, she has two options, shown in Figure 2:
(1) Upload it directly to our Server or (2) export it to a ZIP
archive and upload it via a web form. Either way, we ultimately
receive the same data. FEEDBAG provides the second option
only to allow for a manual review before submission.

On upload, the Event Manager asks the developer to op-
tionally provide demographical information about herself (Fig-
ure 3). If she decides to do so, this data helps us characterize
the population of contributors. The information is added to the
upload as an additional event of the special type User Profile.

The interaction events themselves contain no information
that allows one to directly link them back to the contributor.
However, assuming that she commits her work to a public
source-code repository, it is feasible to establish such a con-
nection. To control what they publish about themselves, devel-
opers may remove (1) timestamps, (2) durations, (3) identifiers
of project-specific methods and classes, or (4) any combination
of these from the interaction events on submission.

After the export, the Event Manager deletes all local events.

Figure 1. Screenshot of the Event Manager

Figure 2. Upload Dialog

Figure 3. User-Profile Dialog



C. Server

The Server accepts interaction-event archives directly from
the Event Manager or via manual upload. It checks that the
received file complies to the data format exported by the Event
Manager and stores it on server-side. The Server does not log
any information about the sender.

III. APPLICATION OF FEEDBAG

In this section, we describe how we previously used FEED-
BAG and discuss potential future uses.

A. Previous Applications

We recently used FEEDBAG to conduct a large-scale study,
recording 6,355 hours of work time at the development de-
partment of an industry partner [5]. In this study, we gained
valuable insights into the activities developers perform during
an average work day and the tools they use. For example, we
found that our participants navigate their codebase for 22.4%
of the time they spend in their IDE. To this end, they open
files through the project tree and use both general purpose and
code-specific searches frequently. We observe that navigation
time strongly correlates with short inactivities, which likely
correspond to periods developers use for code understanding.
Thus, we hypothesize that the amount of navigation is an
indicator for the need for code comprehension. We find that
this observation differs from a previous study on the Pharo
IDE [3]. Future work could investigate the causes of these
differences to identify opportunities to improve IDEs.

B. Applications in Future Work

We recently extended FEEDBAG to collect more detailed
information about code-comprehension activities. With this
new version, we are currently building a dataset of IDE
usage by different types of developers (e.g., academic and
industrial) to investigate differences between these groups. We
will publish this dataset for others to use it as well.

To reveal issues and opportunities for code-comprehension
assistance in IDEs, it is important to compare IDE interactions
from different settings. Therefore, we publish FEEDBAG and
encourage others to create additional public datasets with it.

In our ongoing work, we use the document-editing and
code-completion events to learn how developers explore and
use APIs. The interactions give us an oracle to evaluate
respective tool assistance, such as code completion. We believe
that other recommender systems for software engineering can
be evaluated in a similar fashion, using FEEDBAG datasets.

FEEDBAG enables further empirical research, like studies
on tool adoption. For example, researchers could replicate
the study on unit testing that Beller et al. [4] conducted, to
compare unit testing between Eclipse and Visual Studio.

Furthermore, we believe that FEEDBAG opens up new
opportunities to investigate the differences in IDE usage
between different programming languages. Since the .NET
environment encourages multi-language projects, one could
analyze differences in the behavior of the same developer when
switching between languages.

IV. RELATED TOOLS

In the last years, researchers implemented multiple instru-
mentations of IDEs. The one most similar to ours is a tool
called Blaze [8]. Blaze, like FEEDBAG, instruments the Visual
Studio IDE to record developers’ interactions. Unlike our
tool, Blaze provides game-like feedback to encourage the
usage of certain tools and practices. Neither the tool nor the
respective datasets are publicly available. Snipes et al. [9]
recently published a guide on how to instrument IDEs, based
on their experience with developing Blaze. Unfortunately, the
guide became available only after we conducted our study.
Nevertheless, we find it to be a valuable resource and we can
generally confirm their findings from our own experience.

Minelli et al. [3] developed an instrumentation for the Pharo
IDE. They conducted a study very similar to ours, which
enabled us to make many interesting observations about the
differences between Pharo and Visual Studio [5]. Kersten and
Murphy [10] developed Mylyn, an instrumentation for the
Eclipse IDE. Their interaction events are more coarse grained
than ours. Also Mylyn comes with an assistance tool that
helps developers focus on their current task context, whereas
FEEDBAG is independent of other tools.

V. SUMMARY

We present FEEDBAG, an interaction tracker for Visual
Studio. We used FEEDBAG in a large-scale study, identifying
code-comprehension activities, amongst other things. Future
work should explore interactions from various settings, to
identify issues and opportunities of IDE assistance tools.

VI. ACKNOWLEDGEMENTS

We thank our students D. Albrecht, A. Bauer, U. Fahrer,
M. Kämmerer, S. Kemper, F. Weirich, and M. Zimmermann
for their work on FEEDBAG. The work presented in this
paper was partially funded by the German Federal Ministry of
Education and Research (BMBF), grant no. 01IS12054. The
authors assume responsibility for the content.

REFERENCES

[1] C. Parnin and C. Görg, “Building Usage Contexts During Program
Comprehension,” ICPC ’06, 2006, pp. 13–22.

[2] G. Murphy, M. Kersten, and L. Findlater, “How Are Java Software
Developers Using the Elipse IDE?” IEEE Software, vol. 23, no. 4, 2006.

[3] R. Minelli, A. Mocci, and M. Lanza, “I Know What You Did Last
Summer,” ICPC ’15, 2015, pp. 25–35.

[4] M. Beller, G. Gousios, A. Panichella, and A. Zaidman, “When, How,
and Why Developers (Do Not) Test in Their IDEs,” ESEC/FSE ’15,
2015, pp. 179–190.

[5] S. Amann, S. Proksch, S. Nadi, and M. Mezini, “A Study of Visual
Studio Usage in Practice,” SANER ’16, 2016.

[6] “FeedBaG: An Interaction Tracker for Visual Studio – Online Artifact,”
http://www.st.informatik.tu-darmstadt.de/artifacts/feedbag/.

[7] “ReSharper,” https://www.jetbrains.com/resharper/. Last checked on
November 13, 2015.

[8] W. Snipes, A. R. Nair, and E. Murphy-Hill, “Experiences Gamifying
Developer Adoption of Practices and Tools,” ICSE ’14, 2014, pp. 105–
114.

[9] W. Snipes, E. Murphy-Hill, T. Fritz, M. Vakilian, K. Damevski, A. Nair,
and D. Shepherd, A Practical Guide to Analyzing IDE Usage Data.
Elsevier Inc., 2015, pp. 85–138.

[10] M. Kersten and G. C. Murphy, “Using Task Context to Improve
Programmer Productivity,” FSE ’14. ACM, 2006, pp. 1–11.

https://www.jetbrains.com/resharper/

